Factors regulating lignocellulolytic microbes, their degrading enzymes, and heterotrophic respiration in oil palm cultivated peatlands


  • Muhammad Nurul Hadi Graduate School of Soil Science, IPB University, Bogor
  • Heru Bagus Pulunggono Graduate School of Soil Science, IPB University, Bogor
  • Lilik Tri Indriyati Department of Soil Science and Land Resource, Faculty of Agriculture, IPB University, Bogor
  • Happy Widiastuti Indonesian Research Institute for Biotechnology and Bioindustry, Bogor
  • Moh Zulfajrin Soil Chemistry and Fertility Division, Department of Soil Science and Land Resource, Faculty of Agriculture, IPB University, Bogor




ligninase enzyme activity, mixed effect models, principal component analysis, tropical peatlands


Even though their role in mediating tropical peat decomposition and GHG emissions had been widely recognized, information concerning lignocellulolytic microbes, their degrading enzyme ability, and interconnection with soil physicochemical properties and peat heterotrophic respiration on mature oil palm plantation/OPP block level were rudimentary. This study evaluated the effect of sampling depth (0-30, 30-60, and 60-90 cm), OPP management zone (fertilization circle/FTC, frond stack/FRS, and harvesting path/HVP), and peat physicochemical properties on the lignocellulolytic bacteria and fungi, their degrading enzymes activities and peat heterotrophic respiration/Rh using principal component analysis/PCA, multiple linear regression/MLR, and generalized linear mixed effect models/GLMM. This study found that the soil microbiological and physicochemical properties varied widely. Dominant lignocellulolytic bacterial population and their cellulase enzyme activity were higher than fungi, regardless of sampling depth and management zone. PCA and GLMM analyses showed the significant importance of sampling depth and management zone in governing lignocellulolytic microbial population, their enzyme activities, and Rh. Microbial population and cellulase activity were also remarkably affected by the interaction of all studied factors. Peat chemical properties (pH and total Mn) controlled the natural variance of lignocellulolytic microbes and their enzymes, whereas total K regulate Rh. This study suggested that the research on microbiological-related GHG mitigation in OPP should be focused on managing the fungal population and cellulase enzyme activity at the peat surface (0-30 cm) and fertilization circle.


Amatangelo, K.L. and Vitousek, P.M. 2009. Contrasting predictors of fern versus angiosperm decomposition in a common garden. Biotropica 41(2):154-161. https://doi.org/10.1111/j.1744-7429.2008.00470.x

Anda, M., Ritung, S., Suryani, E., Sukarman, Hikmat, M., Yatno, E., Mulyani, A., Subandiono, R.E., Suratman and Husnain. 2021. Revisiting tropical peatlands in Indonesia: Semi-detailed mapping, extent, and depth distribution assessment. Geoderma 402:115235. https://doi.org/10.1016/j.geoderma.2021.115235

Andersen, R., Chapman, S.J. and Artz, R.R.E. 2013. Microbial communities in natural and disturbed peatlands: A review. Soil Biology and Biochemistry 57:979-994. https://doi.org/10.1016/j.soilbio.2012.10.003

Anderson, J.P.E. 1982. Soil Respiration. In: Page, A.I., Miller, R.H. and Keeney, D.R. (eds), Methods of Soil Analysis. Chemical and Microbiological Methods, American Society of Agronomy: Madison, WI, p.831-871. https://doi.org/10.2134/agronmonogr9.2.2ed.c41

Asemaninejad, A., Thorn, R.G. and Lindo, Z. 2017. Vertical distribution of fungi in hollows and hummocks of boreal peatlands. Fungal Ecology 27:59-68. https://doi.org/10.1016/j.funeco.2017.02.002

Batubara, S.F., Agus, F., Rauf, A. and Elfiati, D. 2019. Soil respiration and microbial population in tropical peat under oil palm plantation. IOP Conference Series: Earth and Environmental Science 260:012083. https://doi.org/10.1088/1755-1315/260/1/012083

Belinky, P.A., Flikshtein, N. and Dosoretz, C.G. 2006. Induction of lignin peroxidase via reactive oxygen species in manganese-deficient cultures of Phanerochaete chrysosporium. Enzyme and Microbial Technology 39(2):222-228. https://doi.org/10.1016/j.enzmictec.2005.10.023

Bellou, S., Makri, A., Triantaphyllidou, I.-E., Papanikolaou, S. and Aggelis, G. 2014. Morphological and metabolic shifts of Yarrowia lipolytica induced by alteration of the dissolved oxygen concentration in the growth environment. Microbiology 160(Pt_4):807-817. https://doi.org/10.1099/mic.0.074302-0

Bonnarme, P. and Jeffries, T.W. 1990. Mn(II) regulation of lignin peroxidases and manganese-dependent peroxidases from lignin-degrading white rot fungi. Applied and Environmental Microbiology 56(1):210-217. https://doi.org/10.1128/aem.56.1.210-217.1990

Bossio, D.A. and Scow, K.M. 1998. Impacts of carbon and flooding on soil microbial communities: Phospholipid fatty acid profiles and substrate utilization patterns. Microbial Ecology 353:265-278. https://doi.org/10.1007/s002489900082

Chowdhary, P., Shukla, G., Raj, G., Ferreira, L.F.R. and Bhargava, R.N. 2018. Microbial manganese peroxidase: a ligninolytic enzyme and its ample opportunities in research. SN Applied Sciences 1:1-45. https://doi.org/10.1007/s42452-018-0046-3

Dariah, A., Marwanto, S. and Agus, F. 2014. Root- and peat-based CO2 emissions from oil palm plantations. Mitigation and Adaptation Strategies for Global Change 19(6):831-843. https://doi.org/10.1007/s11027-013-9515-6

Dhandapani, S., Girkin, N.T., and Evers, S. 2021. Spatial variability of surface peat properties and carbon emissions in a tropical peatland oil palm monoculture during a dry season. Soil Use and Management 38(1):381-395. https://doi.org/10.1111/sum.12741

Dhandapani, S., Ritz, K., Evers, S. and Sjögersten, S. 2019. Environmental impacts as affected by different oil palm cropping systems in tropical peatlands. Agriculture, Ecosystems and Environment 276:8-20. https://doi.org/10.1016/j.agee.2019.02.012

Dhandapani, S., Ritz, K., Evers, S., Cooper, H., Tonks, A. and Sjögersten, S. 2020. Land-use changes associated with oil palm plantations impact PLFA microbial phenotypic community structure throughout the depth of tropical peats. Wetlands 406:2351-2366. https://doi.org/10.1007/s13157-020-01342-0

Ditjen Perkebunan. 2011. Sustainable Palm Oil Development Policy. Seminar on RSPO Implementation in Indonesia. Jakarta, 10 February 2011 (in Indonesian).

Espenberg, M., Truu, M., Mander, Ü., Kasak, K., Nõlvak, H., Ligi, T., Oopkaup, K., Maddison M. and Truu, J. 2018. Differences in microbial community structure and nitrogen cycling in natural and drained tropical peatland soils. Scientific Reports 81, doi:10.1038/s41598-018-23032-y. https://doi.org/10.1038/s41598-018-23032-y

Farjalla, V.F., Amado, A.M., Suhett, A.L. and Meirelles-Pereira, F. 2009. DOC removal paradigms in highly humic aquatic ecosystems. Environmental Science and Pollution Research 16(5):531-538. https://doi.org/10.1007/s11356-009-0165-x

Farmer, J., Matthews, R., Smith, J.U., Smith, P. and Singh, B.K. 2011. Assessing existing peatland models for their applicability for modeling greenhouse gas emissions from tropical peat soils. Current Opinion in Environmental Sustainability 35:339-349. https://doi.org/10.1016/j.cosust.2011.08.010

Ghose, T.K. 1987. Measurement of cellulase activities. Pure and Applied Chemistry 592:257-268. https://doi.org/10.1351/pac198759020257

Girkin, N.T., Lopes dos Santos, R.A., Vane, C.H., Ostle, N., Turner, B.L. and Sjögersten, S. 2020. Peat properties, dominant vegetation type, and microbial community structure in a tropical peatland. Wetlands 40:1367-1377. https://doi.org/10.1007/s13157-020-01287-4

Girkin, N., Turner, B., Ostle, N., Craigon, J. and Sjögersten, S. 2018. Root exudate analogues accelerate CO2 and CH4 production in tropical peat. Soil Biology and Biochemistry 117:48-55. https://doi.org/10.1016/j.soilbio.2017.11.008

Hadi, A., Haridi, M., Inubushi, K., Purnomo, E., Razie, F. and Tsuruta, H. 2001. Effects of land-use change in tropical peat soil on the microbial population and emission of greenhouse gases. Microbes and Environments 16:79-86. https://doi.org/10.1264/jsme2.2001.79

Hapsari, K.A., Biagioni, S., Jennerjahn, T.C., Reimer, P.M., Saad, A., Achnopha, Y., Sabiham, S. and Behling, H. 2017. Environmental dynamics and carbon accumulation rate of a tropical peatland in Central Sumatra, Indonesia. Quaternary Science Reviews 169:173-187. https://doi.org/10.1016/j.quascirev.2017.05.026

Harianti, M., Sutandi, A., Saraswati, R., Maswar and Sabiham, S. 2017. Organic acids exudates and enzyme activities in the rhizosphere based on distance from trunk of oil palm in peatland. Malaysian Journal of Soil Science 21:73-88.

Harianti, M., Sutandi, A., Saraswati, R., Maswar and Sabiham S. 2018. Enzyme activities in relation to total nutrients of K, Ca, Mg Fe, Cu, and Zn in oil palm, rhizosphere of tropical peatland in Riau Indonesia. Biotropia 253:202-213. https://doi.org/10.11598/btb.2018.25.3.862

Hartman, W.H., Richardson, C.J., Vilgalys, R. and Bruland, G.L. 2008. Environmental and anthropogenic controls over bacterial communities in wetland soils. Proceedings of the National Academy of Sciences 10546:17842-17847. https://doi.org/10.1073/pnas.0808254105

Hoyos-Santillan, J., Lomax, B.H., Large, D., Turner, B.L., Boom, A., Lopez, O.R. and Sjögersten, S. 2016. Quality, not quantity: Organic matter composition controls of CO2 and CH4 fluxes in neotropical peat profiles. Soil Biology and Biochemistry 103:86-96. https://doi.org/10.1016/j.soilbio.2016.08.017

Ishikura, K., Yamada, H., Toma, Y., Takakai, F., Morishita, T., Darung, U., Limin, A., Limin, S.H. and Hatano, R. 2016. Effect of groundwater level fluctuation on soil respiration rate of tropical peatland in Central Kalimantan, Indonesia. Soil Science and Plant Nutrition 631:1-13. https://doi.org/10.1080/00380768.2016.1244652

Kassambara, A. and Mundt, F. 2020. Package: 'factoextra'. Extract and Visualize the Results of Multivariate Data Analyses. Retrieved from https://cran.rproject.org/web/ packages/factoextra/index.html.

Khotimah, S., Suharjono, Ardyati, T. and Nurani, Y. 2020. Isolation and identification of cellulolytic bacteria at fibric, hemic, and sapric peat in Teluk Bakung Peatland, Kubu Raya District, Indonesia. Biodiversitas Journal of Biological Diversity 21(5):2103-2112. https://doi.org/10.13057/biodiv/d210538

Könönen, M., Jauhiainen, J., Laiho, R., Spetz, P., Kusin, K., Limin, S. and Vasander, H. 2016. Land use increases the recalcitrance of tropical peat. Wetlands Ecology and Management 246:717-731. https://doi.org/10.1007/s11273-016-9498-7

Jackson, C.R., Liew, K.C. and Yule, C.M. 2009. Structural and functional changes with depth in microbial communities in a tropical Malaysian peat swamp forest. Microbial Ecology 573:402-412. https://doi.org/10.1007/s00248-008-9409-4

Kumar, A. and Chandra, R. 2020. Ligninolytic enzymes and its mechanisms for degradation of lignocellulosic waste in environment. Heliyon 6(2):e03170. https://doi.org/10.1016/j.heliyon.2020.e03170

Leifeld, J., Wüst-Galley, C. and Page, S. 2019. Intact and managed peatland soils as a source and sink of GHGs from 1850 to 2100. Nature Climate Change 9:945-947. https://doi.org/10.1038/s41558-019-0615-5

Lin, L., Kan, X., Yan, H. and Wang, D. 2012. Characterization of extracellular cellulose-degrading enzymes from Bacillus thuringiensis strains. Electronic Journal of Biotechnology 15(3). https://doi.org/10.2225/vol15-issue3-fulltext-1

Liu, L., Gundersen, P., Zhang, W., Zhang, T., Chen, H. and Mo, J. 2015. Effects of nitrogen and phosphorus additions on soil microbial biomass and community structure in two reforested tropical forests. Scientific Reports 5(1):14378. https://doi.org/10.1038/srep14378

Liu, B., Talukder, M.J.H., Terhonen, E., Lampla, M., Vasander, H., Sun, H. and Asiegbu, F. 2019. The microbial diversity and structure in peatland forest in Indonesia. Soil Use and Management 36(1):123-138. https://doi.org/10.1111/sum.12543

López-Mondéjar, R., Algora, C. and Baldrian, P. 2019. Lignocellulolytic systems of soil bacteria: A vast and diverse toolbox for biotechnological conversion processes. Biotechnology Advances 37(6):107374. https://doi.org/10.1016/j.biotechadv.2019.03.013

Lupitasari, E., Widiastuti, R. and Pulunggono, H.B. 2021. Microbial proportion and heterotroph CO2 flux from drainage peatland under oil palm plantation. Journal of Degraded and Mining Lands Management 9(1):3055-3061. https://doi.org/10.15243/jdmlm.2021.091.3055

MacDonald, J., Suzuki, H. and Master, E.R. 2012. Expression and regulation of genes encoding lignocellulose-degrading activity in the genus Phanerochaete. Applied Microbiology and Biotechnology 94(2):339-351. https://doi.org/10.1007/s00253-012-3937-z

Maechler, M., Rousseeuw, P., Struyf, A., Hornik, K., Studer, M., Roudier P. Gonzalez, J., Kozlowski, K. and Schubert, E. 2022. Package: 'cluster'. Finding Groups in Data: Cluster Analysis Extended Rousseeuw et al. Retrieved from https://cran.rproject.org/web/packages/cluster/index.html.

Manning, F.C., Kho, L.K., Hill, T.C., Cornulier, T. and Teh, Y.A. 2019. Carbon emissions from oil palm plantations on peat soil. Frontiers in Forests and Global Change 2:37. https://doi.org/10.3389/ffgc.2019.00037

Mazerolle, M.J. 2022. Package: 'AICcmodavg'. Model Selection and Multimodel Inference Based on (Q)AIC(c). Retrieved from https://cran.r-project.org/web/packages/AICcmodavg/index.html.

Melling, L., Hatano, R. and Goh, K.J. 2005. Soil CO2 flux from three ecosystems in tropical peatland of Sarawak, Malaysia. Tellus B: Chemical and Physical Meteorology 571:1-11. https://doi.org/10.3402/tellusb.v57i1.16772

Miettinen, J., Shi, C., and Liew, S.C. 2016. Land cover distribution in the peatlands of Peninsular Malaysia, Sumatra and Borneo in 2015 with changes since 1990. Global Ecology and Conservation 6:67-78. https://doi.org/10.1016/j.gecco.2016.02.004

Moore, J.A.M., Jiang, J., Patterson, C.M., Mayes, M.A., Wang, G. and Classen, A.T. 2015. Interactions among roots, mycorrhizas and free-living microbial communities differentially impact soil carbon processes. Journal of Ecology 1036:1442-1453. https://doi.org/10.1111/1365-2745.12484

Mulyawan, R., Indriyati, L.T., Widiastuti, H. and Sabiham, S. 2019. Test of laccase and cellulase activities on peat's lignocellulose with different water contents. Jurnal Ilmu Pertanian Indonesia 241:20-27. https://doi.org/10.18343/jipi.24.1.20

Pold, G., Melillo, J.M. and DeAngelis, K.M. 2015. Two decades of warming increases diversity of a potentially lignolytic bacterial community. Frontiers in Microbiology 6. https://doi.org/10.3389/fmicb.2015.00480

Pulunggono, H.B., Anwar, S., Mulyanto, B. and Sabiham, S. 2019. Decomposition of oil palm frond and leaflet residues. AGRIVITA: Journal of Agricultural Science 413:524-536. https://doi.org/10.17503/agrivita.v41i3.2062

Pulunggono, H.B., Siswanto, Mubarok, H., Wiadiastuti, H., Tambusai, N., Zulfajrin, M., Anwar, S., Taniwiryono, D., Sumawinata, B. and Sabiham, S. 2022a. Seasonal litter contribution to total peat respiration from drained tropical peat under mature oil palm plantation. Journal of Degraded and Mining Lands Management 92:3247-3263. https://doi.org/10.15243/jdmlm.2022.092.3247

Pulunggono, H.B., Fitriana, S., Nadalia, D., Nurazizah, L.L., Zulfajrin, M., Mubarok, H., Tambusai, N., Anwar, S. and Sabiham, S. 2022b. Simulating and modeling CO2 flux emitted from decomposed oil palm root cultivated at tropical peatland as affected by water content and residence time. Journal of Degraded and Mining Lands Management 9(4):3663-3676. https://doi.org/10.15243/jdmlm.2022.094.3663

Ruwaimana, M., Anshari, G.Z., Silva, L.C.R. and Gavin, D.G. 2020. The oldest extant tropical peatland in the world: a major carbon reservoir for at least 47,000 years. Environmental Research Letters 15:114027. https://doi.org/10.1088/1748-9326/abb853

Sabiham, S. and Furukawa, H. 1986. Problem soils in Southeast Asia: a study of floral composition of peat soil in the Lower Batang Hari River Basin of Jambi, Sumatra. Southeast Asian Studies 242:113-132.

Schlosser, D. and Höfer, C. 2002. Laccase-catalyzed oxidation of Mn2+ in the presence of natural Mn3+ chelators as a novel source of extracellular H2O2 production and its impact on manganese peroxidase. Applied and Environmental Microbiology 68(7):3514-3521. https://doi.org/10.1128/AEM.68.7.3514-3521.2002

Talbot, J.M., Yelle, D.J., Nowick, J. and Treseder, K.K. 2011. Litter decay rates are determined by lignin chemistry. Biogeochemistry 108:279-295. https://doi.org/10.1007/s10533-011-9599-6

Thormann, M.N., Currah, R.S. and Bayley, S.E. 2004. Patterns of distribution of microfungi in decomposing bog and fen plants. Canadian Journal of Botany 825:710-720. https://doi.org/10.1139/b04-025

Too, C.C., Keller, A., Sickel, W., Lee, S.M. and Yule, C.M. 2018. Microbial community structure in a Malaysian tropical peat swamp forest: The influence of tree species and depth. Frontiers in Microbiology 9. https://doi.org/10.3389/fmicb.2018.02859

Trinder, C.J., Johnson, D. and Artz, R.R.E. 2008. Interactions among fungal community structure, litter decomposition and depth of water table in a cutover peatland. FEMS Microbiology Ecology 643:433-448. https://doi.org/10.1111/j.1574-6941.2008.00487.x

Tonks, A.J., Aplin, P., Beriro, D.J., Cooper, H., Evers, S., Vane, C.H. and Sjögersten, S. 2017. Impacts of conversion of tropical peat swamp forest to oil palm plantation on peat organic chemistry, physical properties and carbon stocks. Geoderma 289:36-45. https://doi.org/10.1016/j.geoderma.2016.11.018

Warren, M., Hergoualc'h, K., Kauffman, J.B., Murdiyarso, D. and Kolka, R. 2017. An appraisal of Indonesia's immense peat carbon stock using national peatland maps: Uncertainties and potential losses from conversion. Carbon Balance and Management 2:12. https://doi.org/10.1186/s13021-017-0080-2

Widiastuti, H., Taniwiryono, D., Siswanto, Pulunggono, H.B., Anwar. S., Sumawinata. B., Mubarok, H. and Sabiham, S. 2021. Exploration of lignocellulolytic microbes in oil palm rhizosphere on peat soils and their respiration activities. Microbiology Indonesia 151:27-35. https://doi.org/10.5454/mi.15.1.5

Wijedasa, L.S., Jauhainen, J., Könönen, M., Lampela, M., Vasander, H., Leblanc, M.-C., Evers, S., Smith, T.E.L., Yule, C.M., Varkkey, H., et al. 2017. Denial of long-term issues with agriculture on tropical peatlands will have devastating consequences. Global Change Biology 23:977-982. https://doi.org/10.1111/gcb.13516

Xu, R., Zhang, K., Liu, P., Han, H., Zhao, S., Kakade, A., Khan, A., Du, D. and Li, X. 2018. Lignin depolymerization and utilization by bacteria. Bioresource Technology 269:557-566. https://doi.org/10.1016/j.biortech.2018.08.118

Yule, C.M. and Gomez, L.N. 2009. Leaf litter decomposition in a tropical peat swamp forest in Peninsular Malaysia. Wetlands Ecology and Management 173:231-241. https://doi.org/10.1007/s11273-008-9103-9

Zhang, D. 2022. Package: 'rsq'. R-Squared and Related Measures. Retrieved from https://cran.rproject.org/web/ packages/rsq/index.html.








How to Cite

Hadi, M. N., Pulunggono, H. B., Indriyati, L. T., Widiastuti, H., & Zulfajrin, M. (2024). Factors regulating lignocellulolytic microbes, their degrading enzymes, and heterotrophic respiration in oil palm cultivated peatlands. Journal of Degraded and Mining Lands Management, 11(2), 5195–5210. https://doi.org/10.15243/jdmlm.2024.112.5195



Research Article

Most read articles by the same author(s)