Simulating and modeling CO2 flux emitted from decomposed oil palm root cultivated at tropical peatland as affected by water content and residence time


  • Heru Bagus Pulunggono Department of Soil Science and Land Resource, Faculty of Agriculture, IPB University
  • Syva Fitriana Graduate Program of Soil Science and Land Resources Department, Faculty of Agriculture, IPB University
  • Desi Nadalia Department of Soil Science and Land Resource, Faculty of Agriculture, IPB University
  • Moh Zulfajrin Graduate Program of Soil Science and Land Resources Department, Faculty of Agriculture, IPB University
  • Lina Lathifah Nurazizah Graduate Program of Agronomy and Horticulture Department, Faculty of Agriculture, IPB University, 16680, West Java, Indonesia
  • Husni Mubarok Agronomy Research, Astra Agro Lestari Tbk, Jakarta, Indonesia
  • Nizam Tambusai Agronomy Research, Astra Agro Lestari Tbk, Jakarta, Indonesia
  • Syaiful Anwar Department of Soil Science and Land Resource, Faculty of Agriculture, IPB University
  • Supiandi Sabiham Department of Soil Science and Land Resource, Faculty of Agriculture, IPB University



artificial intelligence, dead root, greenhouse gas, incubation time, respiration


Determining the oil palm dead roots contribution to total (Rt) and heterotrophic (Rh) respiration as a source of greenhouse gas/GHG emission in tropical peatland is urgently required, as well as predicting their magnitude to cope with difficulties of direct in-situ measurement. This study is designed to simulate the CO2 flux emitted from oil palm dead roots/Rdr in tropical peatland as affected by water content/WC and residence time/RT. The dead oil palm roots were cleaned, treated with control/15, 100, 150, 300, and 450%WC, and then incubated for three months. CO2 flux measurement, C, N, and CN ratio determination were conducted every month. This study demonstrated the importance Rdr among other CO2 emission sources, ranging from 0.05-2.3 Mg CO2 ha-1 year-1 with an average of 0.7 Mg CO2 ha-1 year-1. Rdr contribution for literature Rt and Rh were around 0.3 to 1.3 and 0.9 to 3.5%, respectively. As a product of microbial respiration, Rdr was affected by WC and RT, supported by analysis of variance, linear mixed effect model/REML, and multivariate analysis. 100-150%WC resulting in significant and highest Rdr, whereas the increase (300-450%WC) or decrease (15%WC) would generate lower emission. Rdr culminated in the first month after incubation; meanwhile, it declined in the following months. This study also emphasized non-linear relationships between CO2 flux and other root properties, which can be modeled conveniently using non-linear approach, particularly using polynomial and artificial intelligence-based models. The simulation presented in this study served as an initial attempt to separate Rdr from Rh, as well as to predict CO2 flux with reasonable accuracy and interpretable methods.


Adjuik, T.A. and Davis, S.C. 2022. Machine learning approach to simulate soil CO2 fluxes under cropping systems. Agronomy 12: 197, doi:10.3390/agronomy12010197.

Bates, D., Maechler, M., Bolker, B., Walker, S., Christensen, R.H.B., Singmann, H., Dai, B., Scheipl, F., Grothendieck, G., Green, P., Fox, J., Bauer, A. and Krivitsky, P.A. 2021. Package' lme4.' Linear Mixed-Effects Models using 'Eigen' and S4. Retrieved from lme4/index.html.

Batubara, S.F., Agus, F., Rauf, A., and Elfiati, D. 2019. Impact of soil collar insertion depth on microbial respiration measurements from tropical peat under an oil palm plantation. Peat and Mires 24(6):1-11, doi:10.19189/MaP.2018.DW.373.

Bond-Lamberty, B. 2018. New techniques and data for understanding the global soil respiration flux. Earth's Future 6: 1176–1180, doi:10.1029/2018EF000866.

BPS-Statistic Indonesia. 2020. Indonesian Oil Palm Statistics 2020. Jakarta (ID): BPS-Statistic Indonesia.

BPS-Statistics Indonesia. 2022. Statistical Yearbook of Indonesia 2022. Jakarta (ID): BPS-Statistic Indonesia

Bruce, P. and Bruce, A. 2017. Practical Statistics for Data Scientists. California (US): O'Reilly Media, Inc.

Busman, N.A., Maie, N., Ishak, C.F., Sulaiman, M.F. and Melling, L. 2021. Effect of compaction on soil CO2 and CH4 fluxes from tropical peatland in Sarawak, Malaysia. Environment, Development and Sustainability 23:11646-11659, doi:10.1007/s10668-020-01132-y.

Carlson, K.M., Goodman, L.K. and May-Tobin, C.C. 2015. Modeling relationships between water table depth and peat soil carbon loss in Southeast Asian plantations. Environmental Research Letters 10(7):074006, doi:10.1088/1748-9326/10/7/074006.

Comeau, L.-P., Hergoualc’h, K., Hartill, J., Smith, J., Verchot, L.V., Peak, D. and Salim, A.M. 2016. How do the heterotrophic and the total soil respiration of an oil palm plantation on peat respond to nitrogen fertilizer application?. Geoderma 268:41-51, doi:10.1016/j.geoderma.2016.01.016.

Corley, R.H.V. and Tinker, P.B. 2016. The Oil Palm, Fifth Edition. West Sussex (UK): Blackwell Science Ltd., doi:10.1002/9781118953297.

Dadap, N.C., Hoyt, A.M., Cobb, A.R., Oner, D., Kozinski, M., Fua, P.V., Rao, K., Harvey, C.F. and Connings, A.G. 2021. Drainage canals in Southeast Asian peatlands increase carbon emissions. AGU Advances 2 e2020AV000321, doi:10.1029/2020AV000321.

Dariah, A., Marwanto, S. and Agus, F. 2014. Root- and peat-based CO2 emissions from oil palm plantations. Mitigation and Adaptation Strategies for Global Change 19(6): 831-843, doi:10.1007/s11027-013-9515-6.

Deshmukh, C.S., Julius, D., Desai, A.R., Asyhari, A., Page, S.E., Nardi, N., Susanto, A.P., Nurholis, N., Hendrizal M., Kuniano, S., Suardiwerianto, Y., Salam, Y.W., Agus, P., Astiani, D., Sabiham, S., Gauci, V. and Evans, C.D. 2021. Conservation slows down emission increase from a tropical peatland in Indonesia. Nature Geoscience 14(7): 484-490, doi:10.1038/s41561-021-00785-2.

Dhandapani, S., Girkin, N.T. and Evers, S. 2022. Spatial variability of surface peat properties and carbon emissions in a tropical peatland oil palm monoculture during a dry season. Soil Use and Management 38(1):381-395, doi:10.1111/sum.12741.

Dohong, A., Abdul Aziz, A. and Dargusch, P. 2018. A review of techniques for effective tropical peatland restoration. Wetlands 38(2): 275-292, doi:10.1007/s13157-018-1017-6.

Dou, X., Yang, Y. and Luo, J. 2018. Estimating forest carbon fluxes using machine learning techniques based on eddy covariance measurements. Sustainability 10(1):203, doi:10.3390/su10010203.

Feng, S., Zhou, H. and Dong, H. 2019. Using deep neural network with small dataset to predict material defects. Materials and Design 62:300-310, doi:10.1016/j.matdes.2018.11.060.

Fritsch, S., Guenther, F., Wright, M.N., Suling, M. and Mueller, S.M. 2019. Package 'neuralnet'. Training of Neural Networks. Retrieved from

Graves, S., Piepho, H.-P., Selzer L. and Dorai-Raj. S. 2019. Package' multcompView.' Retrieved from

Greenwell, B., Boehmke, B. and Cunningham, J. 2020. Package 'gbm'. Generalized Boosted Regression Models. Retrieved from packages/gbm/index.html.

Hergoualc’h, K., Hendry, D.T., Murdiyarso, D. and Verchot, L.V. 2017. Total and heterotrophic soil respiration in a swamp forest and oil palm plantations on peat in Central Kalimantan, Indonesia. Biogeochemistry 135(3):203–220, doi:10.1007/s10533-017-0363-4.

Holl, D., Pfeiffer, E.-M. and Kutzbach, L. 2020. Comparison of eddy covariance CO2 and CH4 fluxes from mined and recently rewetted sections in a northwestern German cutover bog. Biogeosciences 17(10):2853-2874, doi:10.5194/bg-17-2853-2020.

Hooijer, A., Page, S., Jauhiainen, J., Lee, W.A., Lu, X.X., Idris, A., and Anshari, G. 2012. Subsidence and carbon loss in drained tropical peatlands. Biogeosciences 9: 1053-1071, doi:10.5194/bg-9-1053-2012.

Husnain, H., Wigena, I.G.P., Dariah, A., Marwanto, S., Setyanto, P. and Agus, F. 2014. CO2 emissions from tropical drained peat in Sumatra, Indonesia. Mitigation and Adaptation Strategies for Global Change 19(6):845-862, doi:10.1007/s11027-014-9550-y.

Husson, F., Josse, J., Le, S., and Mazet, J. 2020. Package ‘FactoMineR’. Multivariate Exploratory Data Analysis and Data Mining. Retrieved from

Hutchings, I. J. and Martin, T. L. 1934. Influence of the carbon-nitrogen ratios of organic matter on rate of decomposition in the soil. Agronomy Journal 26(4):333, doi:10.2134/agronj1934.00021962002600040012x.

Ishikura, K., Yamada, H., Toma, Y., Takakai, F., Morishita, T., Darung, U., Limin, A., Limin, S.H. and Hatano, R. 2017. Effect of groundwater level fluctuation on soil respiration rate of tropical peatland in Central Kalimantan, Indonesia. Soil Science and Plant Nutrition 63(1):1-13, doi:10.1080/00380768.2016.1244652.

Jauhiainen, J., Kerojoki, O., Silvennoinen, H., Limin, S. and Vasander, H. 2014. Heterotrophic respiration in drained tropical peat is greatly affected by temperature - a passive ecosystem cooling experiment. Environmental Research Letters 9(10):105013, doi:10.1088/1748-9326/9/10/10501.

Kassambara, A. and Mundt, F. 2021. Package: 'factoextra'. Extract and Visualize the Results of Multivariate Data Analyses. Retrieved from

Khalid, H., Zin, Z.Z. and Anderson, J.M. 1999. Quantification of oil palm biomass and nutrient value in mature plantation. II Below-ground biomass. Journal of Oil Palm Research 11(2):63-71.

Kuhn, M., Wing, J., Weston, S., Williams, A., Keefer, C., Engelhardt, A., Cooper T., Mayer Z., Kenkel, B., R Core Team, Benesty, M., Lescarbeau, R., Ziem A., Scrucca, L., Tang, Y., Candan, C., and Hunt, T. 2021. Package ‘caret’. Classification and Regression Training. Retrieved from

Larionova, A.A., Sapronov, D.V., Lopez de Gerenyu, V.O., Kuznetsova, L.G. and Kudeyarov, V.N. 2006. Contribution of plant root respiration to the CO2 emission from soil. Eurasian Soil Science 39(10):1127-1135, doi:10.1134/s1064229306100103.

Leifeld, J., Wüst-Galley, C. and Page, S. 2019. Intact and managed peatland soils as a source and sink of GHGs from 1850 to 2100. Nature Climate Change 9:945-947, doi:10.1038/s41558-019-0615-5.

Liaw, A. and Wiener, M. 2018. Package 'randomForest'. Breiman and Cutler's Random Forests for Classification and Regression. Retrieved from

Madsen, R., Xu, L., Claassen, B. and McDermitt, D. 2009. Surface monitoring method for carbon capture and storage projects. Energy Procedia 1(1):2161-2168, doi:10.1016/j.egypro.2009.01.281.

Manning, F.C., Kho, L.K., Hill, T.C., Cornulier, T. and Teh, Y.A. 2019. Carbon emissions from oil palm plantations on peat soil. Frontiers in Forests and Global Change 2: 37, doi:10.3389/ffgc.2019.00037.

Marwanto, S. and Agus, F. 2013. Is CO2 flux from oil palm plantations on peatland controlled by soil moisture and/or soil and air temperatures? Mitigation and Adaptation Strategies for Global Change 19(6):809-819, doi:10.1007/s11027-013-9518-3.

McCalmont, J., Kho, L.K., Teh, Y.A., Lewis, K., Chocholek, M., Rumpang, E. and Hill, T. 2021. Short†and longâ€term carbon emissions from oil palm plantations converted from logged tropical peat swamp forest. Global Change Biology 27(11):2361-2376, doi:10.1111/gcb.15544.

Melling, L., Cindy Soo, Y.T., Kah, J.G. and Hatano, R. 2013. Soil microbial and root respirations from three ecosystems in tropical peatland of Sarawak, Malaysia. Journal of Oil Palm Research 25:44-57.

Melling, L., Hatano, R. and Goh, K.J. 2005. Soil CO2 flux from three ecosystems in tropical peatland of Sarawak, Malaysia. Tellus B: Chemical and Physical Meteorology 57(1):1-11, doi:10.3402/tellusb.v57i1.16772.

Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., Leisch, F., Chang, C.-C. and Lin, C.-C. 2021. Package' e1071.' Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien. Retrieved from

Miettinen, J., Hooijer, A., Vernimmen, R., Liew, S.C. and Page, S.E. 2017. From carbon sink to carbon source: extensive peat oxidation in insular Southeast Asia since 1990. Environmental Research Letters 12:024014, doi:10.1088/1748-9326/aa5b6f.

Milborrow, S. 2021. Package 'earth.' Multivariate Adaptive Regression Splines. Retrieved from

Molnar, C. and Schratz, P. 2020. Package' iml.' Interpretable Machine Learning. Retrieved from

Moradi, A., Teh, C.B.S., Goh, K.J., Husni, M.H.A. and Ishak, C.F. 2013. Decomposition and nutrient release temporal pattern of oil palm residues. Annals of Applied Biology 164(2):208-219, doi:10.1111/aab.12094.

Nurzakiah, S., Sutandi, S., Djajakirana, G., Sudadi, U. and Sabiham, S. 2021. The contribution of organic acid on heterotrophic CO2 flux from tropical peat: a trenching study. Journal of Degraded and Mining Lands Management 9(1):3035-3044, doi:10.15243/jdmlm.2021.091.3035.

Padarian, J., Minasny, B., and McBratney, A.B. 2020. Machine learning and soil sciences: a review aided by machine learning tools. Soil 6(1):35-52, doi:10.5194/soil-6-35-2020.

Pulunggono, H.B., Anwar, S., Mulyanto, B. and Sabiham, S. 2019. Decomposition of oil palm frond and leaflet residues. AGRIVITA: Journal of Agricultural Science 41(3):524-536, doi:10.17503/agrivita.v41i3.2062.

Pulunggono, H.B., Siswanto, Mubarok, H., Widiastuti, H., Tambusai, N., Zulfajrin, M., Anwar, S., Taniwiryono, D., Sumawinata. B. and Sabiham. S. 2022. Seasonal litter contribution to total peat respiration from drained tropical peat under mature oil palm plantation. Journal of Degraded and Mining Lands Management 9(2):3247-3263, doi:10.15243/jdmlm.2022.092.3247.

Rossiter, D.G. 2018. Past, present & future of information technology in pedometrics. Geoderma 324:131-137, doi:10.1016/j.geoderma.2018.03.009.

Sabiham, S., Marwanto, S., Watanabe, T., Funakawa, S., Sudadi, U. and Agus, F. 2014. Estimating the relative contributions of root respiration and peat decomposition to the total CO2 flux from peat soil at an oil palm plantation in Sumatra, Indonesia. Tropical Agriculture and Development 58(3): 87-93, doi:10.11248/jsta.58.87.

Sharma, S. 1996. Applied Multivariate Techniques. New York (US): Wiley.

Shrivastava, P., Khongphakdi, P., Palamanit, A., Kumar, A. and Tekasakul, P. 2020. Investigation of physicochemical properties of oil palm biomass for evaluating potential of biofuels production via pyrolysis processes. Biomass Conversion and Biorefinery 11(5):1987-2001, doi:10.1007/s13399-019-00596-x.

Siang, C.S., Wahid, S.A.A., and Sung, C.T.B. 2022. Standing biomass, dry-matter production, and nutrient demand of tenera oil palm. Agronomy 12:426, doi:10.3390/agronomy12020426.

Therneau, T., Atkinson, B. and Ripley, B. 2022. Package 'rpart'. Retrieved from

Violita, V., Triadiati, T., Anas, I. and Miftahudin, M. 2016. Fine root production and decomposition in lowland rainforest and oil palm plantations in Sumatra, Indonesia. HAYATI Journal of Biosciences 23(1):7-12, doi:10.1016/j.hjb.2015.10.008.

Wakhid, N. and Hirano, T. 2021. Contribution of CO2 emission from litter decomposition in an oil palm plantation on tropical peatland. IOP Conference Series: Earth and Environmental Science 648:012133, doi:10.1088/1755-1315/648/1/012133.

Wiley, M. and Wiley, J.F. 2019. Advanced R Statistical Programming and Data Models: Analysis, Machine Learning, and Visualization. Berkeley (US): Apress, doi:10.1007/978-1-4842-2872-2.

Wood, 2021. Package' mgcv.' Mixed GAM Computation Vehicle with Automatic Smoothness Estimation. Retrieved from

Wright, M.N., Wager, S. and Probst, P. 2021. Package 'ranger'. A Fast Implementation of Random Forests. Retrieved from

Yang, S., Cheng, R., Xiao, W., Shen, Y., Wang, L., Guo, Y. and Sun, P. 2019. Heterogeneity in decomposition rates and nutrient release in fine-root architecture of Pinus massoniana in the three gorges reservoir area. Forests 11(1):14, doi:10.3390/f11010014.

Zhou, W., Zhu, J., Ji, H., Grace, J., Sha, L., Song, Q., Liu, Y., Bai, X., Lin, Y., Gao, J., Fei, X., Zhou, R., Tang, J., Deng, X., Yu, G., Zhang, J., Zheng, X., Zhao, J. and Zhang, Y. 2021. Drivers of difference in CO2 and CH4 emissions between rubber plantation and tropical rainforest soils. Agricultural and Forest Meteorology 304-305:108391, doi:10.1016/j.agrformet.2021.108391.








How to Cite

Pulunggono, H. B., Fitriana, S., Nadalia, D., Zulfajrin, M., Nurazizah, L. L., Mubarok, H., Tambusai, N., Anwar, S., & Sabiham, S. (2022). Simulating and modeling CO2 flux emitted from decomposed oil palm root cultivated at tropical peatland as affected by water content and residence time. Journal of Degraded and Mining Lands Management, 9(4), 3663–3676.



Research Article

Most read articles by the same author(s)

1 2 > >>