Microbial proportion and heterotroph CO2 flux from drainage peatland under oil palm plantation

Authors

  • Eka Lupitasari Soil and Environmental Biotechnology, Department of Soil Science and Land Resource, Faculty of Agriculture, Bogor Agricultural University, Jl Meranti Kampus IPB Dramaga Bogor, Indonesia
  • Rahayu Widyastuti Soil and Environmental Biotechnology, Department of Soil Science and Land Resource, Faculty of Agriculture, Bogor Agricultural University, Jl Meranti Kampus IPB Dramaga Bogor, Indonesia
  • Heru Bagus Pulunggono Department of Soil Science and Land Resource, Faculty of Agriculture, Bogor Agricultural University, Jl Meranti Kampus IPB Dramaga Bogor, Indonesia

DOI:

https://doi.org/10.15243/jdmlm.2021.091.3055

Keywords:

greenhouse gases, rhizosphere, root exudates, water management

Abstract

The difference in soil layer can affect heterotroph respiration that means CO2 fluxes from microbial decomposition in peatlands. Oil palm plants release root exudates transported to other places, i.e., shrub, by water movement, which can stimulate microbial activity. This study was conducted to learn the effects of differences of the soil layer and distance from the trunk in drainage peatland under oil palm plantation on total bacteria, fungi, cellulolytic bacteria, ligninolytic fungi, and heterotroph fluxes CO2, then compared to a shrub. Heterotroph respiration decreased with soil layer depth, where at the layer 0-20 cm released amount of CO2 as much 6.07 + 1.76, at 20-40 cm was 5.18 + 0.50, and at 40-60 cm 5.27 + 1.20 mg CO2 100 g-1 day-1, and tended higher than in shrub where a layer of 0-20 cm released 5.51 + 1.69, then decrease at 20-40 cm to 4.83 + 1.38, and at 40-60 cm 4.30 + 1.08 mg CO2 100 g-1 day-1. Total bacteria (107 CFU g-1) and fungi (105 CFU g-1) were higher than total cellulolytic bacteria (103 CFU g-1) and ligninolytic fungi (102 CFU g-1) in both under oil palm plantation and shrub. Organic acids affected the abundance of total bacteria and fungi but did not affect cellulolytic bacteria and ligninolytic fungi on both sites, as shown by a lower population and low cellulose and laccase enzymes. These findings showed that heterotroph CO2 flux tended higher in oil palm plantations and lignocellulolytic microbes are not the only source of heterotroph respiration.

References

Anas, I. 1989. Manual Practice of Soil Biology Laboratory. Inter University Center for Biotechnology. Institut Pertanian Bogor Press. Bogor, ID.

Batubara, S.F., Agus, F., Rauf, A. and Elfiati, D. 2018. Soil respiration and microbial population in tropical peat under oil palm plantation. IOP Conference Series: Earth and Environmental Science 260: 012083, doi: 10.1088/1755-1315/260/1/012083.

Baziramakenga, R., Simard, R.R, and Leroux, G.D. 1995. Determination of organic acids in soil extracts by ion chromatography. Soil Biology and Biochemistry 27(3): 349-356, doi: 10.1016/0038-0717(94)00178-4.

Bengston, P. and Bengtsson, G. 2007. Rapid turnover of DOC in temperate forests accounts for increased CO2 production at elevated temperatures. Ecology Letters 10(9): 783-790, doi:10.1111/j.1461-0248.2007.01072.x.

Brouns, K., Keuskamp, J.A,, Potkamp. G., Verhoeven, J.T.A. and Hefting, M.M. 2016. Peat origin and land use effect on microbial activity, respiration dynamics and exo-enxyme activities in drained peat soils in the Netherlands. Soil Biology and Biochemistry (95): 144-155, doi:10.1016/j.soilbio.2015.11.018.

Dariah, A., Marwanto, S. and Agus, F. 2014. Root and peat-based CO2 emissions from oil palm plantations. Mitigation and Adaptation Strategies for Global Change 19(6): 831-843, doi:10.1007/s11027-013-9515-6.

Dashtban, M., Schraft, H., Syed, T.A. and Qin, W. 2010. Fungal biodegradation and enzymatic modification of lignin. International Journal of Biochemistry and Molecular Biology 1(1): 36-50.

Eichlerova, I.J., Snajdr, P. and Baldrian, P. 2012. Laccase activity in soils: considerations for the measurement of enzyme activity. Chemosphere 88(10): 11541160, doi: 10.1016/j.chemosphere.2012.03.019.

Fenner, N. and Freeman, C. 2011. Drought-induced carbon loss in peatlands. Nature Geoscience 4(12): 895-900, doi:10.1038/NGEO1323.

Ghose, T.K. 1987. Measurement of cellulase activities. Pure and Applied Chemistry 59(2): 257-268, doi: 10.1351/pac198759020257.

Girkin, N.T., Turner, B.L., Ostle, N., Craignon, J. and Sjogersten, S. 2018. Root exudate analogue accelerates CO2 and CH4 production in tropical peat. Soil Biology and Biochemistry 117: 48-55, doi: 10.1016/j.soilbio.2017.11.008.

Gramss, G., Voigt, K.D., Bublitz, F. and Bergmann, H. 2003. Increased solubility of (heavy) metals in soil during microbial transformations of sucrose and casein amendments. Journal of Basic Microbiology 43: 483-498, doi: 10.1002/jobm.200310251.

Hanson, P., Edwards, N., Garten, C.T. and Andrews, J. 2000. Separating root and soil microbial contributions to soil respiration: A review of methods and observation. Biogeochemistry 48(1): 115-146, doi:10.1023/a:1006244819642.

Hanson, P.J., Riggs, J.S., Nettles, W.R., Phillips, J.R., Krassovski, M.B., Hook, L.A., Gu, L., Richardson, A.D., Aubrecht, D.M., Ricciuto, M., Warren, J.M. and Barbier, C. 2017. Attaining whole-ecosystem warming using air and deep-soil heating methods with an elevated CO2 atmosphere. Biogeosciences 14: 861–883, doi: 10.5194/bg-14-861-2017, doi: 10.5194/bg-14-861-2017.

Harianti, M., Sutandi, A., Saraswati, R., Maswar. and Sabiham, S. 2017. Organic acids exudates and enzyme activities in the rhizosphere based on distance from trunk of oil palm in peatland. Malaysian Journal of Soil Science 21: 73-88.

Hergoualc'h, K. and Verchot, L.V. 2011. Stocks and fluxes of carbon associated with land use change in Southeast Asian tropical peatlands: a review. Global Biogeochemical Cycles 25, doi: 10.1029/2009GB003718.

Hoijer, A., Page, S., Canadell, J., Silvius, M., Kwadijk, J., Wosten, H. and Jauhianen, J. 2010. Current and future CO2 emissions from drained peatlands in Southeast Asia. Biogeoscience 7: 1505-1514, doi:10.5194/bg-7-1505-2010.

Itoh, M., Okimoto, Y., Hirano, T. and Kusin, K. 2017. Factors affecting oxidative peat decomposition due to land use in tropical peat swamp forest in Indonesia. Science of the Total Environment 609: 906-915, doi:10.1016/j.scitotenv.2017.07.132.

Jaenicke, J., Wösten, H., Budiman, A. and Siegert, F. 2010. Planning hydrological restoration of peatlands in Indonesia to mitigate carbon dioxide emissions. Mitigation and Adaptation Strategies to Global Change 15(3): 223–239, doi:10.1007/s11027-010-9214-5.

Kane, E.S., Mazzoleni, C.J., Hribljan, J.A., Johnson, C.P., Pypker, T.G. and Chimner, R. 2014. Peat porewater dissolved organic carbon concentration and lability increase with a warning: a field temperature manipulation experiment in a poor fen. Biogeochemistry 119(1-3): 161-178, doi:10.1007/s10533-014-9955-4.

Keuskamp, J.A., Dingemans, B.J.J., Lehtinen, T., Sarneel, J.M., Hefting, M.M. and Muller-Landau, H. 2013. Tea Bag Index: a novel approach to collect uniform decomposition data across ecosystems. Methods in Ecology and Evolution 4: 1070–1075, doi: 10.1111/2041-210X.12097.

Kuzyakov, Y. 2002. Review: factor affecting rhizosphere priming effects. Journal of Plant Nutrition and Soil Science 165(4): 382-396, doi:10.1002/1522-2624(200208)165:4<382::aid-jpln382>3.0.co;2-#.

Kuzyakov, Y. and Domaski, G. 2000. Carbon input by plants into soil : a review. Journal of Plant Nutrition and Soil Science 163(4): 421-431, doi:10.1002/1522-2624(200008)163:4%3c421::aid-jpln421%3e3.0.co;2-r.

Mulyawan, R., Lilik Tri Indriyati, L.T., Widiastuti, H. and Sabiham, S. 2019. Test of lakase and selulase activities on peat’s lignosellulose with different water contents. Jurnal Ilmu Pertanian Indonesia 24(1): 2027, doi: 10.18343/jipi.24.1.20 (in Indonesian).

Nurzakiah, S., Sabiham, S., Nugroho, B. and Nursyamsi, D. 2014. Estimation of the potential carbon emission from acrotelmic and catotelmic peats. Journal of Tropical Soil Science 19(2): 81-89, doi:10.5400/jts.2014.v19i2.81-89.

Nurzakiah, S., Sutandi, A., Sabiham, S,. Djajakirana, G. and Sudadi, U. 2020. Controls on the net dissolved organic carbon production in tropical peat. Sains Tanah Journal of Soil Science and Agroclimate 17(2): 161-169, doi:10.20961/stjssa.v17i2.45123.

Page, S.E., Rieley, J.O. and Banks, C.J. 2011. Global and regional importance of tropical peatland carbon pool. Global Change Biology 17(2): 798-818, doi:10.1111/j.1365-2486.2010.02279.x.

Paul, E.A. and Clark, F.E. 1996. Soil Microbiology and Biochemistry. Academic Press. London, UK.

Prananto, J.A., Minasny, B., Comeu, L.P., Rudiyanto, R. and Grace, P. 2020. Drainage increase CO2 and N2O emissions from tropical peat soils. Global Change Biology 2020: 00: 1-18, doi: 10.1111/gcb.15147.

Proctor, C. and He, Y. 2021. Modeling root exudate accumulation gradients to estimate net exudation rates by peatland soil depth. Plants 10(1): 106, doi:10.3390/plants10010106.

Sabiham, S., Marwanto, S., Watanabe, T., Funakawa, S., Sudadi, U. and Agus, F. 2014. Estimating the relative contribution of root respiration and peat decomposition to the total CO2 flux from peat soil at an oil palm plantation in Sumatera, Indonesia. Tropical Agriculture and Development 58(3): 87-93.

Sinuraya, Z. 2010. Study of oil palm roots distribution on peatland at PT. Hari Sawit Jaya Plantation, Labuhan Batu Regency. MSc thesis. Agricultural Faculty. Universitas Sumatera Utara, Medan, Indonesia. 103 pp (in Indonesian).

Widiastuti, H., Siswanto, D., Taniwiryono, H.B., Pulunggono, S., Anwar, B., Sumawinata, H., Mubarok and Sabiham, S. 2020. Exploration of lignocellulolytic microbes in oil palm rhizosphere on peat soil and their respiration activities. Microbiology Indonesia 15(1): 27-35, doi: 10.5454/mi.15.1.5.

Downloads

Submitted

24-06-2021

Accepted

18-07-2021

Published

01-10-2021

How to Cite

Lupitasari, E., Widyastuti, R., & Pulunggono, H. B. (2021). Microbial proportion and heterotroph CO2 flux from drainage peatland under oil palm plantation. Journal of Degraded and Mining Lands Management, 9(1), 3055–3061. https://doi.org/10.15243/jdmlm.2021.091.3055

Issue

Section

Research Article