Assessing the distribution of total Fe, Cu, and Zn in tropical peat at an oil palm plantation and their relationship with several environmental factors

Authors

  • Heru Bagus Pulunggono Department of Soil Science and Land Resource, Faculty of Agriculture, IPB University http://orcid.org/0000-0003-3924-7839
  • Lina Lathifah Nurazizah Bachelor Program of Agronomy and Horticulture Department, IPB University, Bogor 16680 Indonesia http://orcid.org/0000-0002-4229-6896
  • Moh Zulfajrin Bachelor Program of Soil Science and Land Resource Department, IPB University, Bogor 16680 Indonesia http://orcid.org/0000-0001-8231-3622
  • Syaiful Anwar Department of Soil Science and Land Resource, Faculty of Agriculture, IPB University
  • Supiandi Sabiham Department of Soil Science and Land Resource, Faculty of Agriculture, IPB University

DOI:

https://doi.org/10.15243/jdmlm.2022.092.3349

Keywords:

oil palm age, peat micronutrients, peat thickness, season, tree and canal distances

Abstract

Extensive utilization of fragile tropical peatlands ecosystem encourages a better understanding of spatiotemporal micronutrients distribution. The distribution of total Fe, Cu, and Zn in peat and their relationship with environmental factors were studied under oil palm plantation, Pangkalan Pisang, Koto Gasib, Riau, Indonesia. Peat samples were taken compositely inside the block using a combination of six factors, including a) the oil palm age (<6, 6-15, >15 years old), b) the peat thickness (< 3 and >3 m), c) season (rainy and dry), d) the distances from the secondary canal (10, 25, 50, 75, 100, and 150 m), e) the distances from an oil palm tree (1, 2, 3, and 4 m), and f) the depth of sample collection (0-20, 20-40, and 40-70 cm from the peat surface). Total Fe, Cu, and Zn were determined by the wet digestion method. These micronutrients observed in this study possessed high variability; however, they were within the expected range in tropical peatland. The entire micronutrients were statistically different by oil palm age, peat thickness, and distance from canal. Meanwhile, total Cu and Zn were also significantly different at each season. The oil palm age, peat thickness, and distance from the canal were the common factors controlling total Fe, Cu, and Zn in peat significantly. Moreover, total Cu and Zn were also dictated by season, distance from the oil palm tree, and depth of sample collection. Based on visual interpretation in PCA (principal component analysis), all micronutrients were categorized into two groups, separated by 2 m distance from the oil palm tree and 20 cm depth from the soil surface. Our study also highlights the dominance of the dilution over the enrichment process in peat, which requires further research to formulate micronutrients fertilization, especially for an extended cultivation time.

References

Abat, M., McLaughlin, M.J., Kirby, J.K. and Stacey, S.P. 2012. Adsorption and desorption of copper and zinc in tropical peat soils of Sarawak Malaysia. Geoderma 175-176:58-63, doi:1016/j.geoderma.2012.01.024.

Ambak, K., Abu Bakar, Z. and Tadano, T. 1991. Effect of micronutrient application on the growth and occurrence of sterility in barley and rice in a Malaysian deep peat soil. Soil Science and Plant Nutrition 37(4):715–724, doi:10.1080/00380768.1991.10416940.

Anda, M., Ritung, S., Suryani, E., Sukarman, Hikmat, M., Yatno, E., Mulyani, A., Subandiono, R.E., Suratman, and Husnain. 2021. Revisiting tropical peatlands in Indonesia: Semi-detailed mapping, extent and depth distribution assessment. Geoderma 402:115235, doi:10.1016/j.geoderma.2021.115235.

Bhattacharyya, A., Schmidt, M.P., Stavitski, E. and Martinez, C.E. 2018. Iron speciation in peats: chemical and spectroscopic evidence for the co-occurrence of ferric and ferrous iron in organic complexes and mineral precipitates. Organic Geochemistry 115:124-137, doi:10.1016/j.orggeochem.2017.10.012.

Broadley, M., Brown, P., Cakmak, I., Rengel, Z. and Zhao, F. 2012. Function of Nutrients: Micronutrients. In Marschner, H. Marschner’s Mineral Nutrition of Higher Plants. Academic Press. p.191-223 doi:10.1016/B978-0-12-384905-2.00007-8.

Broeshart, H., Ferwerda, J.D. and Kovachich, W.G. 1957. Mineral deficiency symptoms of the oil palm. Plant and Soil 8:289-300, doi:10.1007/BF01666319.

Corley, R.H.V. and Tinker, P.B. 2016. The Oil Palm. John Wiley & Sons, Ltd. p.329-398 ISBN: 978-1-405-18939-2.

Dhandapani, S., Evers, S., Ritz, K. and Sjögersten, S. 2021. Nutrient and trace element concentrations influence greenhouse gas emissions from Malaysian Tropical Peatlands. Soil Use and Management 37:138-150, doi:10.1111/sum.12669.

Dhandapani, S., Ritz, K., Evers, S., Yule, C. and Sjögersten, S. 2018. Are secondary forests second-rate? Comparing peatland greenhouse gas emissions, chemical, and microbial community properties between primary and secondary forests in Peninsular Malaysia. Science of the Total Environment 655:220-231, doi:10.1016/j.scitotenv.2018.11.046.

Dohong, A., Aziz, A.A. and Dargusch, P. 2017. A review of the drivers of tropical peatland degradation in South-East Asia. Land Use Policy 69:349-360, doi:10.1016/j.landusepol.2017.09.035.

Gandois, L., Hoyt, A.M., Mounier, S., Le Roux, G., Harvey, C.F., Claustres, A., Nuriman, M. and Anshari, G. 2020. From canals to the coast: dissolved organic matter and trace metal composition in rivers draining degraded tropical peatlands in Indonesia. Biogeosciences 17(7):1897-1909, doi:10.5194/bg-17-1897-2020.

Harianti, M., Sutandi, A., Saraswati, R., Maswar, and Sabiham, S. 2017. Organic acids exudates and enzyme activities in the rhizosphere based on distance from the trunk of oil palm in peatland. Malaysian Journal of Soil Science 21:73-88.

Hashim, S.A., Teh, C.B.S. and Ahmed, O.H. 2019. Influence of water table depths, nutrients leaching losses, subsidence of tropical peat soil and oil palm (Elaeis guineensis Jacq.) seedling growth. Malaysian Journal of Soil Science 23:13–30.

Hinsinger, P., Plassard, C., Tang, C. and Jaillard, B. 2003. Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: A review. Plant and Soil 248:43–59, doi:10.1023/A:1022371130939.

Husni, M.H.A., Shanthi, D., Manas, A.R., Anuar, A.R. and Shamshuddin, J. 1995. Chemical variables affecting the lime requirement determination of tropical peat soils. Communications in Soil Science and Plant Analysis 26(13-14):2111-2122, doi:10.1080/ 00103629509 369433.

Jauhainen, J., Kerojoki, O., Silvennoinen, H., Limin, S. and Vasander, H. 2014. Heterotrophic respiration in drained tropical peat is greatly affected by temperature – A passive ecosystem cooling experiment. Environmental Research Letters 9:105013, doi:10.1088/1748-9326/9/10/105013.

Kawahigashi, M. and Sumida, H. 2006. Humus composition and physico-chemical properties of humic acids in tropical peat soils under sago palm plantation. Soil Science and Plant Nutrition 52(2):153-161, doi:10.1111/j.1747-0765.2006.00028.x.

Könönen, M., Jauhainen, J., Laiho, R., Kusin, K. and Vasander, H. 2015. Physical and chemical properties of tropical peat under stabilised land uses. Mires and Peat 16:1-13.

Law, E.A., Bryan, B.A., Meijaard, E., Mallawaarachchi, T., Struebig, M. and Wilson, K.A. 2015. Ecosystem services from a degraded peatland of Central Kalimantan: Implications for policy, planning, and management. Ecological Applications 25(1):70-8, doi:10.1890/13-2014.1.

Lucas, R.E. 1982. Organic Soils (Histosol): Formation, Distribution, Physical, Chemical and Management for Crop Production. East Lansing: Michigan State University, Agricultural Experiment Station.

Marwanto, S., Watanabe, T., Iskandar, W., Sabiham, S. and Funakawa, S. 2018. Effect of seasonal rainfall and water table movement on the soil solution composition of tropical peatland. Soil Science and Plant Nutrition 64(3):386-395, doi:10.1080/00380768.2018.1436940.

McBride, M.B. and Spiers, G. 2001. Trace element content of selected fertilizers and dairy manures as determined by ICP–MS. Communications in Soil Science and Plant Analysis 32(1-2):139-156, doi:10.1081/CSS-100102999.

Mermut, A.R., Jain, J.C., Song, L., Kerrich, R., Kozak, L. and Jana, S. 1996. Trace element concentrations of selected soils and fertilizers in Saskatchewan, Canada. Journal of Environment Quality 25(4):845-853, doi:10.2134/jeq1996.00472425002500040028x.

Miettinen, J., Hooijer, A., Vernimmen, R., Liew, S.C. and Page, S.E. 2017. From carbon sink to carbon source: extensive peat oxidation in Insular Southeast Asia since 1990. Environmental Research Letters 12:024014 doi:10.1088/1748-9326/aa5b6f.

Miettinen, J., Shi, C. and Liew, S.C. 2016. Land cover distribution in the peatlands of Peninsular Malaysia, Sumatra and Borneo in 2015 with changes since 1990. Global Ecology and Conservation 6:67-78, doi:10.1016/j.gecco.2016.02.004.

Miyamoto, E., Ando, H., Kakuda, K., Jong, F.-S. and Watanabe, A. 2013. Fate of microelements applied to a tropical peat soil: column experiment. Communications in Soil Science and Plant Analysis 44:17:2524-2534, https://doi.org/10.1080/00103624.2013.812734.

Nelvia, N. 2018. The use of fly ash in peat soil on the growth and yield of rice. AGRIVITA: Journal of Agricultural Science 40(3):527-535, doi:10.17503/ agrivita.v40i3.793.

Othman, H., Mohammed, A.T., Darus, F.M., Harun, M.H. and Zambri, M.P. 2011. Best management practices for oil palm cultivation on peat: Ground water-table maintenance in relation to peat subsidence and estimation of CO2 emissions at Sessang, Sarawak. Journal of Oil Palm Research 23:1078-1086.

Prananto, J.A., Minasny, B., Comeau, L.P., Rudiyanto, R. and Grace, P. 2020. Drainage increases CO2 and N2O emissions from tropical peat soils. Global Change Biology 26(8):4583-4600, doi:10.1111/gcb.15147.

Pulunggono, H.B., Anwar, S., Mulyanto, B. and Sabiham, S. 2019. Decomposition of oil palm frond and leaflet residues. AGRIVITA: Journal of Agricultural Science 41(3):524-536, doi:10.17503/agrivita.v41i3.2062.

Ribeiro, K., Pacheco, F.S., Ferreira, J.W., de Sousaâ-Neto, E.R., Hastie, A., Krieger Filho, G.C., Alvalá, P.C., Forti, M.C. and Ometto, J.P. 2020. Tropical peatlands and their contribution to the global carbon cycle and climate change. Global Change Biology 27(3):489-505, doi:10.1111/gcb.15408.

Riedel, T., Zak, D., Biester, H. and Dittmar, T. 2013. Iron traps terrestrially derived dissolved organic matter at redox interfaces. PNAS 110(25):10101-10105, doi:10.1073/pnas.1221487110.

Sabiham, S., Marwanto, S., Watanabe, T., Funakawa, S., Sudadi, U. and Agus, F. 2014. Estimating the relative contributions of root respiration and peat decomposition to the total CO2 flux from peat soil at an oil palm plantation in Sumatra, Indonesia. Malaysia. Tropical Agriculture and Development 58(3):87-93, doi:10.11248/jsta.58.87.

Saputra, E. 2019. Beyond fires and deforestation: Tackling land subsidence in peatland areas, a case study from Riau, Indonesia. Land 8(5):76, doi:10.3390/land8050076.

Sari, D. A., Margules, C., Lim, H. S., Widyatmaka, F., Sayer, J., Dale, A. and Macgregor, C. 2021. Evaluating policy coherence: A case study of peatland forests on the Kampar Peninsula landscape, Indonesia. Land Use Policy 105(31):105396, doi:10.1016/j.landusepol.2021.105396.

Szajdak, L.W., Jezierski, A., Wegner, K., Meysner, T. and Szczepánski, M. 2020. Influence of drainage on peat organic matter: Implications for development, stability, and transformation. Molecules 25(11):2587, doi:10.3390/molecules25112587.

Tipping, E. and Hurley, M.A. 1992. A unifying model of cation binding by humic substances. Geochimica et Cosmochimica Acta 56(10):3627-3641. doi:10.1016/0016-7037(92)90158-f.

Tipping, E., Smith, E.J., Lawlor, A.J., Hughes, S. and Stevens, P.A. 2003. Predicting the release of metals from ombrotrophic peat due to drought-induced acidification. Environmental Pollution 123(2):239-253, doi:10.1016/S0269-7491(02)00375-5.

USDA. 2004. Soil Survey Laboratory Methods Manual. In Burt R. (Ed.). Soil Survey Investigation Report No. 42. Version 4.0. Natural Resources Conservation Service.

Wakhid, N., Hirano, T., Okimoto, Y., Nurzakiah, S. and Nursyamsi, D. 2017. Soil carbon dioxide emissions from a rubber plantation on tropical peat. Science of the Total Environment 581-582:857-865, doi:10.1016/ j.scitotenv.2017.01.035.

Watanabe, T., Hasenaka, Y., Suwondo, Sabiham, S., Funakawa, S. 2013. Mineral nutrient distributions in tropical peat soil of Riau, Indonesia with special reference to peat thickness. Japanese Society of Pedology 57(2):64-71, doi:10.18920/ pedologist.57.2_64.

Yonebayashi, K., Okazaki, M., Pechayapisit, J., Vijarnsorn, P., Zahari, A.B. and Kyuma, K. 1994. Distribution of heavy metals among different bonding forms in tropical peat soils. Soil Science and Plant Nutrition 40(3):425-434, doi:10.1080/00380768.1994.10413320.

Yusuyin, Y., Tan, N.P., Wong, M.K., Abdu, A.B., Iwasaki, K. and Tanaka, S. 2016. Chemical forms and distribution of soil micronutrients at an 18-years-old oil palm field in Central Pahang Malaysia. Tropical Agriculture and Development 60(4):263-274, doi:10.11248/jsta.60.263.

Zhang, X., Müler, M., Jiang, S., Wu, J., Zhu, X., Mujahid, A., Zhu, Z., Muhammad, M.F., Sia, E.S.A., Jang, F.H.A.J. and Zhang, J. 2020. Distribution and flux of dissolved iron in the peatland-draining rivers and estuaries of Sarawak Malaysian Borneo. Biogeosciences 17:1805-1819, doi:10.5194/bg-17-1805-2020.

Zhao, Y., Xiang, W., Ma, M., Zhang, X., Bao, Z., Xie, S. and Yan, S. 2019. The role of laccase in stabilization of soil organic matter by iron in various plant-dominated peatlands: Degradation of sequestration? Plant and Soil 443:575-590, doi:10.1007/s11104-019-04245-0.

Downloads

Submitted

01-11-2021

Accepted

04-12-2021

Published

01-01-2022

How to Cite

Pulunggono, H. B., Nurazizah, L. L., Zulfajrin, M., Anwar, S., & Sabiham, S. (2022). Assessing the distribution of total Fe, Cu, and Zn in tropical peat at an oil palm plantation and their relationship with several environmental factors. Journal of Degraded and Mining Lands Management, 9(2), 3349–3358. https://doi.org/10.15243/jdmlm.2022.092.3349

Issue

Section

Research Article

Most read articles by the same author(s)