Carbon storage and energy production of Eucalyptus urophylla developed in dryland ecosystems at East Nusa Tenggara

Authors

  • Ronggo Sadono Department of Forest Management, Faculty of Forestry, Universitas Gadjah Mada, Jln. Agro No.1 Bulaksumur, Sleman 55281, Daerah Istimewa Yogyakarta, Indonesia.
  • Wahyu Wardhana Department of Forest Management, Faculty of Forestry, Universitas Gadjah Mada, Jln. Agro No.1 Bulaksumur, Sleman 55281, Daerah Istimewa Yogyakarta, Indonesia.
  • Fahmi Idris Graduate School of Forestry, Faculty of Forestry, Universitas Gadjah Mada, Jln. Agro No.1 Bulaksumur, Sleman 55281, Daerah Istimewa Yogyakarta, Indonesia.
  • Pandu Yudha Adi Putra Wirabuana Department of Forest Management, Faculty of Forestry, Universitas Gadjah Mada, Jln. Agro No.1 Bulaksumur, Sleman 55281, Daerah Istimewa Yogyakarta, Indonesia.

DOI:

https://doi.org/10.15243/jdmlm.2021.091.3107

Keywords:

calorific value, carbon emissions, climate change mitigation, natural resources, renewable energy

Abstract

The development of Eucalyptus urophylla in dryland ecosystems plays an important contribution to support climate change mitigation and renewable energy diversification. However, the information about the potential of E. urophylla for carbon reduction and energy production is rarely documented, even though it is necessary as fundamental considerations to determine the best strategy for sustainable natural resources management, primarily in dryland ecosystems. This study aimed to quantify the carbon storage and energy production of E. urophylla established in dryland ecosystems at East Nusa Tenggara. The study site is located in a eucalyptus plantation managed by Timor Tengah Selatan Forest Management Unit. Destructive sampling was conducted on 25 sample trees that were evenly distributed from small to big ones. The percentage of carbon content in every tree component, namely stem, branch, and foliage, was determined using elemental analysis, while the calorific value of each tree component was analyzed using a bomb calorimeter. Carbon storage in each component was calculated by multiplying biomass and the percentage of carbon content, while the energy production was computed by multiplying high heating value and biomass from every tree component. The results found the mean carbon storage of E. urophylla in the study site was 55.51 kg tree-1 with a minimum of 6.34 kg tree-1 and a maximum of 184.76 kg tree-1. The percentage of carbon content in the foliage was lower than other tree components by approximately 34.1%. Interestingly, the calorific value of foliage was relatively higher than stem and branch with around 5,252 kcal kg-1. The energy production of E. urophylla ranged from 252.6 to 7,813.3 MJ tree-1 with an average of 2,357.87 MJ tree-1. According to the results, this study concluded the development of E. urophylla in dryland ecosystems demonstrated a meaningful contribution to carbon absorption and energy production at East Nusa Tenggara.

References

Abrantes, K.K.B., Paiva, L.M., De Almeida, R.G., Urbano, E., Ferreira, A.D. and Mazucheli, J. 2019. Modeling the individual height and volume of two integrated crop-livestock-forest systems of Eucalyptus spp. in the Brazilian Savannah. Acta Scientific 41: 1-8, doi: 10.4025/actasciagron.v41i1.42626.

Almulqu, A.A., Arpornpong, N. and Boonyanuphap, J. 2019. Biomass estimation and allometric equation for tree species in dry forest of East Nusa Tenggara, Indonesia. Foresty Ideas 25: 369-384.

Altanzagas, B., Luo, Y., Altansukh, B., Dorjsuren, C., Fang, J. and Hu, H. 2019. Allometric equations for estimating the above-ground biomass of five forest tree species in Khangai, Mongolia. Forests 10: 1-17, doi: 10.3390/f10080661.

Amissah, L., Mohren, G.M.J., Kyereh, B. and Poorter, L. 2015. The effects of drought and shade on the performance, morphology and physiology of Ghanaian tree species. PLoS One 10: 1-22, doi: 10.1371/journal.pone.0121004.

Arora, G., Chaturvedi, S., Kaushal, R., Nain, A. and Tewari, S. 2014. Growth , biomass , carbon stocks , and sequestration in an age series of Populus deltoides plantations in Tarai region of central Himalaya. Turkish Journal of Agriculture and Forestry 38: 550-560, doi: 10.3906/tar-1307-94.

Beyene, K. 2016. Assessing univariate and multivariate homogeneity of variance: a guide for practitioners. Journal of Mathematical Theory and Modeling 6: 13-17.

Binkley, D., Campoe, O.C., Alvares, C., Carneiro, R.L., Cegatta, Ã. and Luiz, J. 2017. The interactions of climate, spacing and genetics on clonal Eucalyptus plantations across Brazil and Uruguay. Forest Ecology and Management 405: 271-283, doi: 10.1016/j.foreco.2017.09.050.

Chakradhari, S. and Patel, K.S. 2016. Combustion characteristics of tree woods. Journal of Sustainable Bioenergy Systems 6: 31-43, doi: 10.4236/jsbs.2016.62004.

Cuong, T., Chinh, T.T.Q., Zhang, Y. and Xie, Y. 2020. Economic performance of forest plantations in Vietnam: Eucalyptus, Acacia mangium, and Manglietia conifera. Forests 11: 1-14, doi: 10.3390/f11030284.

Ellison, D., Morris, C.E., Locatelli, B., Sheil, D., Cohen, J., Murdiyarso, D., Gutierrez, V., van Noordwijk, M., Creed, I.F., Pokorny, J., Gaveau, D., Spracklen, D. V., Tobella, A.B., Ilstedt, U., Teuling, A.J., Gebrehiwot, S.G., Sands, D.C., Muys, B., Verbist, B., Springgay, E., Sugandi, Y. and Sullivan, C.A. 2017. Trees, forests and water: Cool insights for a hot world. Global Environmental Change 43: 51-61, doi: 10.1016/j.gloenvcha.2017.01.002.

Ferreira, M.C., dos Santos, R.C., Castro, R.V.O., Carneiro, A. de C.O., da Silva, G.G.C. , Castro, A.F.N.M., de Costa, S.E. L. and Pimenta, A.S. 2017. Biomass and energy production at short rotation Eucalyptus clonal plantations deployed in Rio Grande Do Norte. Revista Ãrvore 41: 1-7, doi: . 10.1590/1806-90882017000500004.

Ghasemi, A. and Zahediasl, S. 2012. Normality tests for statistical analysis: A guide for non-statisticians. International Journal of Endocrinology and Metabolism 10: 486-489, doi: 10.5812/ijem.3505.

Hakamada, R., Hubbard, R.M., Ferraz, S. and Stape, J.L. 2017. Biomass production and potential water stress increase with planting density in four highly productive clonal Eucalyptus genotypes. Southern Forests: a Journal of Forest Science 79: 251-257, doi: 10.2989/20702620.2016.1256041.

Hernández-Ramos, J., De los Santos-Posadas, H.M., Valdez-Lazalde, J.R., Tamarit-Urias, J.C., Ãngeles-Pérez, G., Hernández-Ramos, A., Peduzzi, A. and Carrero, O. 2017. Biomasa aérea y factores de expansión en plantaciones forestales comerciales de Eucalyptus urophylla S.T. Blake. Agrociencia 51: 921-938.

Istrefi, E., Toromani, E., Çollaku, N. and Thaçi, B. 2019. Allometric biomass equations for young trees of four broadleaved species in Albania. New Zealand Journal of Forestry Science 49: 1-14, doi: 10.33494/nzjfs492019x51x.

Ju, Y.M., Ann, B.J. and Lee, J. 2016. Comparative analysis of gross calorific value by determination method of lignocellulosic biomass using a bomb calorimeter. Journal of The Korean Wood Science and Technology 44: 864-871, doi: 10.5658/WOOD.2016.44.6.864.

Kalima, T., Malik, J. and Sunarto. 2019. Exploration of rattan species in South Central Timor Regency, East Nusa Tenggara Province. Jurnal Pro-Life 6: 160-170, doi: 10.33541/pro-life.v6i2 (in Indonesian).

Karyati, Widiati, K.Y., Karmini, and Mulyadi, R. 2021. The allometric relationships for estimating above-ground biomass and carbon stock in an abandoned traditional garden in East Kalimantan, Indonesia. Biodiversitas 22: 751-762, doi: 10.13057/biodiv/d220228.

Keyser, T.L. and Zarnoch, S.J. 2012. Thinning, age, and site quality influence live tree carbon stocks in upland hardwood forests of the Southern Appalachians. Forest Science 58: 407-418.

King, G.M., Gugerli, F., Fonti, P. and Frank, D.C. 2013. Tree growth response along an elevational gradient: Climate or genetics? Oecologia 173: 1587-1600, doi: 10.1007/s00442-013-2696-6.

Kohl, M., Neupane, P.R. and Lotfiomran, N. 2017. The impact of tree age on biomass growth and carbon accumulation capacity?: A retrospective analysis using tree ring data of three tropical tree species grown in natural forests of Suriname. PLoS One 12: 1-17.

Latifah, S., Muhdi, M., Purwoko, A. and Tanjung, E. 2018. Estimation of above-ground tree biomass Toona sureni and Coffea arabica in agroforestry system of Simalungun, North Sumatra, Indonesia. Biodiversitas 19 620-625, doi: 10.13057/biodiv/d190239.

Lisboa, S.N., Guedes, B.S., Ribeiro, N. and Sitoe, A. 2018. Biomass allometric equation and expansion factor for a mountain moist evergreen forest in Mozambique. Carbon Balance and Management 13: 1-16, doi: 10.1186/s13021-018-0111-7.

Lu, H., Xu, J., Li, G. and Liu, W. 2020. Site classification of Eucalyptus urophylla × Eucalyptus grandis plantations in China. Forests 11: 1-15, doi: 10.3390/f11080871.

Lu, K., Bi, H., Watt, D., Strandgard, M. and Li, Y. 2018. Reconstructing the size of individual trees using log data from cut-to-length harvesters in Pinus radiata plantations: a case study in NSW, Australia. Journal of Forestry Research 29:13-33, doi: 10.1007/s11676-017-0517-1.

Magalhães, T.M., Cossa, V.N., Guedes, B.S. and Fanheiro, A.S.M. 2020. Species-specific biomass allometric models and expansion factors for indigenous and planted forests of the Mozambique highlands. Journal of Forestry Research 32(333): 1-19, doi: 10.1007/s11676-020-01156-0.

Magnago, L.M., Arantes, M.D.C., Vidaurre, G.B., Moulin, J.C. and Trugilho, P.F. 2016. Energy estimate and carbon stock in short-rotation eucalyptus stands. Cerne 22: 527-534, doi: 10.1590/01047760201622042209.

Mishra, P., Pandey, C.M. and Singh, U. 2019. Descriptive statistics and normality tests for statistical data. Annals of Cardiac Anaesthesia 22: 67-72, doi: doi.org/10.4103/aca.ACA.

Oliveira, A.H., Silva, M.L.N., Curi, N., Avanzi, J.C., Neto, G.K. and Araújo, E.F. 2013. Water erosions in soils under eucalyptus forest as affected by development stages and management systems. Ciencia e Agrotecnologia 37: 159-169, doi: 10.1590/S1413-70542013000200007.

Pujiarti, R. and Kasmudjo. 2016. Chemical compositions and insecticidal activity of Eucalyptus urophylla essential oil against Culex quinquefasciatus mosquito. Journal of The Korean Wood Science and Technology 44: 494-504, doi: 10.5658/WOOD.2016.44.4.494.

Pujiarti, R., Nurjanto, H.H. and Sunarta, S. 2018. Antifungal activity of Eucalyptus urophylla oil against Aspergillus niger and Fusarium oxyporum. Agrivita 40: 55-62, doi: 10.17503/agrivita.v40i1.990.

Puri, L., Meilby, H., Rayamajhi, S., Timilsina, Y.P., Gautam, N.P., Subedi, R. and Larsen, H.O. 2013. Growth and volume based on permanent sample plots in forests managed by communities. Banko Janakari 22: 11-18, doi10.3126/banko.v22i2.9194.

Raj, A., Jhariya, M.K. and Bargali, S.S. 2016. Bund based agroforestry using Eucalyptus species: a review. Current Agriculture Research Journal 4: 148-158, doi: 10.12944/carj.4.2.04.

Robakowski, P., Bielinis, E. and Sendall, K. 2018. Light energy partitioning, photosynthetic efficiency and biomass allocation in invasive Prunus serotina and native Quercus petraea in relation to light environment, competition and allelopathy. Journal of Plant Research 131: 505-523, doi: 10.1007/s10265-018-1009-x.

Saadaoui, E., Ben Yahia, K., Dhahri, S., Ben Jamaa, M.L. and Khouja, M.L. 2017. An overview of adaptative responses to drought stress in Eucalyptus spp. Forestry Studies 67: 86-96, doi: 10.1515/fsmu-2017-0014.

Sadono, R., Wardhana, W., Wirabuana, P.Y.A.P. and Idris, F. 2020. Productivity evaluation of Eucalyptus urophylla plantation established in dryland ecosystems, East Nusa Tenggara. Journal of Degraded and Mining Lands Management 8: 2502-2458, doi: 10.15243/jdmlm. 2020.081.2461.

Sadono, R., Wardhana, W., Wirabuana, P.Y.A.P. and Idris, F. 2021. Soil chemical properties influences on the growth performance of Eucalyptus urophylla planted in dryland ecosystems, East Nusa Tenggara. Journal of Degraded and Mining Lands Management 8: 2635-2642, doi: 10.15243/jdmlm.2021.082.2635.

Sadono, R., Wardhana, W., Wirabuana, P.Y.A.P. and Idris, F., 2021. Allometric equations for estimating above-ground biomass of Eucalytpus urophylla S.T. Blake in East Nusa Tenggara. Jurnal Manajemen Hutan Tropika 27: 24-31, doi: 10.7226/jtfm.27.1.24.

Sato, J.H., de Figueiredo, C.C., Marchão, R.L., Madari, B.E., Benedito, L.E.C., Busato, J.G. and de Souza, D.M. 2014. Methods of soil organic carbon determination in Brazilian savannah soils. Scientia Agricola 71: 302-308, doi: 10.1590/0103-9016-2013-0306.

Sebei, K., Sakouhi, F., Herchi, W., Khouja, M.L. and Boukhchina, S. 2015. Chemical composition and antibacterial activities of seven Eucalyptus species essential oils leaves. Biological Research 48: 1-5.

Simetti, R., Bonduelle, G.M., da Silva, D.A., Mayer, S.L.S., Souza, H.P. and de Muniz, G.I.B. 2018. Production of biomass and energy stock for five Eucalyptus species. Revista Ciência da Madeira - RCM 9: 30-36, doi: 10.12953/2177-6830/rcm.v9n1p30-36.

Stavi, I. 2019. Seeking environmental sustainability in dryland forestry. Forests 10: 1-6, doi: 10.3390/f10090737.

Sumardi, Kurniawan, H. and Prastyono, 2016. Genetic parameter estimates for growth traits in an Eucalyptus Urophylla S.T. Blake progeny test in Timor Island. Indonesian Journal of Forestry Research 3: 119-127, doi: 10.20886/ijfr.2016.3.2.119-127.

Thompson, A., Davis, J.D. and Oliphant, A.J. 2016. Surface runoff and soil erosion under eucalyptus and oak canopy. Earth Surface Processes and Landforms 41: 1018-1026, doi: doi.org/10.1002/esp.3881.

Traoré, N., Sidibé, L., Figuérédo, G. and Chalchat, J.C. 2010. Chemical composition of five essential oils of eucalyptus species from mali: E. houseana f.v. Fitzg. ex Maiden, E. citriodora Hook., E. raveretiana F. Muell., E. robusta Smith and E. urophylla S.T. Blake. Journal of Essential Oil Research 22: 510-513, doi: 10.1080/10412905.2010.9700385.

Viera, M. and Rodríguez-Soalleiro, R. 2019. A complete assessment of carbon stocks in above and belowground biomass components of a hybrid eucalyptus plantation in Southern Brazil. Forests 10: 1-12, doi: 10.3390/f10070536.

Visser, L., Hoefnagels, R. and Junginger, M. 2020. The potential contribution of imported biomass to renewable energy targets in the EU-the trade-off between ambitious greenhouse gas emission reduction targets and cost thresholds. Energies 13: 1-30, doi: 10.3390/en13071761.

Wang, Z., Du, A., Xu, Y., Zhu, W. and Zhang, J. 2019. Factors limiting the growth of eucalyptus and the characteristics of growth and water use under water and fertilizer management in the dry season of Leizhou Peninsula, China. Agronomy 9: 1-17, doi: 10.3390/agronomy9100590.

Wirabuana, P.Y.A.P., Alam, S., Matatula, J., Harahap, M.M., Nugroho, Y., Idris, F., Meinata, A. and Sekar, D.A., 2021. The growth, aboveground biomass, crown development, and leaf characteristics of three eucalyptus species at initial stage of planting in Jepara, Indonesia. Biodiversitas 22(5): 2859-2869, doi: 10.13057/biodiv/d220550.

Wirabuana, P.Y.A.P., Sadono, R. and Jurniarso, S., 2019. Fertilization effects on early growth, aboveground biomass, carbon storage, and leaf characteristics of Eucalyptus pellita F.Muell. in South Sumatra. Jurnal Manajemen Hutan Tropika 25: 154-163, doi: 10.7226/jtfm.25.3.154

Wirabuana, P.Y.A.P., Setiahadi, R., Sadono, R., Lukito, M., Martono, D.S. and Matatula, J., 2020. Allometric equations for estimating biomass of community forest tree species in Madiun, Indonesia. Biodiversitas 21(9): 4291-4300, doi: 10.13057/biodiv/d210947.

Yirdaw, E., Tigabu, M. and Monge, A. 2017. Rehabilitation of degraded dryland ecosystems - review. Silva Fennica 51: 1-32, doi: 10.14214/sf.1673.

Yu, F., Van Truong, T., He, Q., Hua, L., Su, Y. and Li, J. 2019. Dry season irrigation promotes leaf growth in Eucalyptus urophylla × E. grandis under fertilization. Forests 10: 1-14, doi: 10.3390/f10010067.

Zhang, Z.Z., Zhao, P., Oren, R., Mccarthy, H.R., Niu, J.F., Zhu, L.W., Ni, G.Y. and Huang, Y.Q. 2015. Water use strategies of a young Eucalyptus urophylla forest in response to seasonal change of climatic factors in South China. Biogeosciences Discussions 12(13): 10469-10510, doi: 10.5194/bgd-12-10469-2015.

Zhou, L., Li, J., Kong, Q., Luo, S., Wang, J., Feng, S., Yuan, M., Chen, T., Yuan, S. and Ding, C. 2021. Chemical composition, antioxidant, antimicrobial, and phytotoxic potential of Eucalyptus grandis × E. urophylla leaves essential oils. Molecules 26: 1-12, doi: 10.3390/molecules26051450.

Downloads

Submitted

11-07-2021

Accepted

01-08-2021

Published

01-10-2021

How to Cite

Sadono, R., Wardhana, W., Idris, F., & Wirabuana, P. Y. A. P. (2021). Carbon storage and energy production of Eucalyptus urophylla developed in dryland ecosystems at East Nusa Tenggara. Journal of Degraded and Mining Lands Management, 9(1), 3107–3114. https://doi.org/10.15243/jdmlm.2021.091.3107

Issue

Section

Research Article

Most read articles by the same author(s)

1 2 > >>