Hydrological function of rewetted peatlands linked to saturated hydraulic conductivity in Kubu Raya, West Kalimantan, Indonesia

Authors

  • Rabbirl Yarham Mahardika Graduate School, Department of Soil Science and Land Resource, IPB University, Bogor, Indonesia
  • Suria Darma Tarigan Soil and Water Conservation Division, IPB University, Bogor, Indonesia https://orcid.org/0000-0003-0153-0399
  • Dwi Putro Tejo Baskoro Department of Soil Science, UPN “Veteran” Yogyakarta, Indonesia
  • Vinni Lovita Department of Soil Science, UPN “Veteran” Yogyakarta, Indonesia
  • Adi Gangga Yayasan Konservasi Alam Nusantara, Jakarta, Indonesia
  • Adibtya Asyhari Yayasan Konservasi Alam Nusantara, Jakarta, Indonesia
  • Arif Fatoni Department of Soil Science, Tanjungpura University, Pontianak, Indonesia
  • Kristoporus Jepri Department of Soil Science, Tanjungpura University, Pontianak, Indonesia
  • Adzan Pandu Ravelle Department of Soil Science, Tanjungpura University, Pontianak, Indonesia

DOI:

https://doi.org/10.15243/jdmlm.2024.113.5717

Keywords:

drained peatland, hydraulic properties, Ks, peat decomposition, rewetting

Abstract

The hydrological function of peatlands, one of which is acting as a medium for storing and releasing water, undergoes alteration due to degradation. Saturated hydraulic conductivity (Ks) is a pivotal parameter for comprehending the hydraulic properties of peatlands. Ks plays a crucial role in the transmission and release of water influenced by other peat properties. This research examined the impact of Ks and selected peat properties, namely bulk density and available water content, to depict the hydrological function in rewetted peatlands. The study sites are rubber plantation (RB), oil palm plantation (OP), and drained secondary forest (SF). Results revealed a significantly higher Ks in OP (106.7 cm hr-1) compared to RB (19.56 cm hr-1) and DSF (15.1 cm hr-1). The hydrological function at all study sites was categorized as high, with minor degradation in OP and moderate degradation in RB and SF. Nonetheless, these findings necessitate fundamental interpretation and adjustment. The outcomes of this study can be utilized to prioritize rewetting efforts in the study sites, emphasizing the importance of prioritizing immature peat (fibric) with high Ks.

References

Anshari, G.Z., Afifudin, M., Nuriman, M., Gusmayanti, M., Arianie, L., Susana, R., Nusantara, R.W., Sugardjito, J. and Rafiastanto, A. 2010. Drainage and land use impacts on changes in selected peat properties and peat degradation in West Kalimantan Province, Indonesia. Biogeosciences 7:3403-3419. https://doi.org/10.5194/bg-7-3403-2010

Anwar, S., Kosaki, T. and Yonebayashi, K. 2001. Impregnation of peat soils using polyethylene glycol 4000 for the preparation of thin sections. Soil Science and Plant Nutrition 47(1):79-86. https://doi.org/10.1080/00380768.2001.10408370

Baird, A.J., Low, R., Young, D., Swindles, G.T., Lopez, O.R. and Page, S.E. 2017. High permeability explains the vulnerability of the carbon stored in drained tropical peatlands. Geophysical Research Letters 44:1333-1339. https://doi.org/10.1002/2016GL072245

Dommain, R., Couwenberg, J. and Joosten, H. 2010. Hydrological self-regulation of domed peatlands in South-East Asia and consequences for conservation and restoration. Mires and Peat 6:1-17.

Evers, S., Yule, C.M., Padfield, R., O'Reilly, P. and Varkkey, H. 2017. Keep wetlands wet: The myth of sustainable development of tropical peatlands - implications for policies and management. Global Change Biology 23(2):534-549. https://doi.org/10.1111/gcb.13422

Fewster, R.E., Morris, P.J., Swindles, G.T., Baird, A.J., Turner, T.E. and Ivanovic, R.F. 2023. Controls on saturated hydraulic conductivity in a degrading permafrost peatland complex. Water Resource Research 59:e2023WR035398. https://doi.org/10.1029/2023WR035398

Gabriel, M., Toader, C., Faul, F., Roßkopf, N., Grundling, P., van Huyssteen, C., Grundling, A.T. and Zeitz, J. 2018. Physical and hydrological properties of peat as proxies for degradation of South African peatlands: implications for conservation and restoration. Mires and Peat 21:1-21. https://doi.org/10.19189/MaP.2018.OMB.336

Giesen, W. and Sari, E.N.N. 2018. Tropical Peatland Restoration Report: The Indonesian Case. Berbak Green Prosperity Partnership Kemitraan Kesejahteraan Hijau (Kehijau Berbak). Millennium Challenge Account - Indonesia Euroconsult Mott MacDonald.

Giesen, W.B.J.T., Persch, S., Urzainqui, I., Wardwell, D., Chatellier, J.L., Wang, Y-H.O., Mahardhitama, P., Nurzirwan, R.Y., Laurén, A. and Giesen, P.T. 2023. Roles of fire history and rewetting in peatland restoration and vegetation recovery on the Merang peat dome, South Sumatra, Indonesia. Mires and Peat 29:21-25. https://doi.org/10.19189/MaP.2023.OMB.Sc.2096288

Glaser, P.H., Rhoades, J. and Reeve, A.S. 2020. The hydraulic conductivity of peat with respect to scaling, botanical composition, and greenhouse gas transport: Mini-aquifer tests from the Red Lake peatland, Minnesota. Journal of Hydrology 596:125686. https://doi.org/10.1016/j.jhydrol.2020.125686

Gusmayanti, E., Anshari, G.Z., Pramulya, M. and Ruliyansyah, A. 2019. CO2 fluxes from drained tropical peatland used for oil palm plantation in relation to peat characteristics and crop age after planting. Biodiversitas 20(6):1650-1657. https://doi.org/10.13057/biodiv/d200622

Hooijer, A., Page, S., Jauhiainen, J., Lee, W.A., Lu, X.X., Idris, A. and Anshari, G.Z. 2012. Subsidence and carbon loss in drained tropical peatlands. Biogeoscience 9(3):1053-1071. https://doi.org/10.5194/bg-9-1053-2012

Hooijer, A., Vernimmen, R., Visser, M. and Mawdsley, N. 2015. Flooding projections from elevation and subsidence models for oil palm plantations in the Rajang Delta peatlands, Deltares report (p. 76).

Iiyama, I., Osawa, K. and Nagai, T. 2012. A seasonal behavior of surface soil moisture condition in a reclaimed tropical peatland. Soil Science and Plant Nutrition 58(5):543-552. https://doi.org/10.1080/00380768.2012.723222

Jaenicke, J., Englhart, S. and Siegert, F. 2011. Monitoring the effect of restoration measures in Indonesian peatlands by radar satellite imagery. Journal of Environmental Management 92:630-638. https://doi.org/10.1016/j.jenvman.2010.09.029

Jaenicke, J., Rieley, J.O., Mott, C., Kimann, P. and Siegert, F. 2008. Determination of the amount of carbon stored in Indonesian peatlands. Geoderma 147(3-4):151-158. https://doi.org/10.1016/j.geoderma.2008.08.008

Jaenicke, J., Wosten, H., Budiman, A. and Siegert, F. 2010. Planning hydrological restoration of peatlands in Indonesia to mitigate carbon dioxide emissions. Mitigation and Adaption Strategies for Global Change 15:223-239. https://doi.org/10.1007/s11027-010-9214-5

Joosten, H., Tapio-Bistrom, M-L. and Tol, S. 2012. Peatlands: Guidance For Climate Change Mitigation Through Conservation, Rehabilitation and Sustainable Use (2nd ed). Mitigation of Climate Change in Agriculture Series 5. Rome: Food and Agriculture Organization of the United Nations.

Kaczmarek, L., Grodzka-Lukaszewska, M., Sinicyn, G., Grygoruk, M., Jastrzebska, M. and Szatylowicz, J. 2023. Hydraulic Conductivity Tests in the Triaxial Stress State: Is Peat an Aquitard or an Aquifer? Water 15:1064. https://doi.org/10.3390/w15061064

Kechavarzi, C., Dawson, Q. and Leeds-Harrison, P. 2010. Physical properties of low-lying agricultural peat soils in England. Geoderma 154:196-202. https://doi.org/10.1016/j.geoderma.2009.08.018

King, E.G. and Hobbs, R.J. 2006. Identifying Linkages among Conceptual Models of Ecosystem Degradation and Restoration: Towards an Integrative Framework. Restoration Ecology 14:369-378. https://doi.org/10.1111/j.1526-100X.2006.00145.x

Könönen, M., Jauhiainen, J., Laiho, R., Kusin, K. and Vasander, H. 2015. Physical and chemical properties of tropical peat under stabilised land uses. Mires and Peat 16(8):1-13.

Kurnain, A. 2019. Hydrophysical properties of ombrotrophic peat under drained peatlands. International Agrophysics 33:277-283. https://doi.org/10.31545/intagr/110773

Kurnianto, S., Selker, J., Kauffman, J.B., Murdiyarso, D. and Peterson, J.T. 2018. The influence of land-cover changes on the variability of saturated hydraulic conductivity in tropical peatlands. Mitigation and Adaption Strategy for Global Change 24:535-555. https://doi.org/10.1007/s11027-018-9802-3

Lampela, M., Jauhiainen, J. and Vasander, H. 2014. Surface peat structure and chemistry in a tropical peat swamp forest. International Journal of Plant-Soil Relationship 382:329-347. https://doi.org/10.1007/s11104-014-2187-5

Lennartz, B. and Liu, H. 2019. Hydraulic functions of peat soils and ecosystem service. Frontiers of Environmental Sciences 7:92. https://doi.org/10.3389/fenvs.2019.00092

Liu, H. and Lennartz, B. 2019. Hydraulic properties of peat soils along a bulk density gradient-A meta study. Hydrological Processes 33:101-114. https://doi.org/10.1002/hyp.13314

Liu, H., Janssen, M. and Lennartz, B. 2016. Changes in flow and transport patterns in fen peat following soil degradation. Euro. Journal of Soil Science 67(6):763-772. https://doi.org/10.1111/ejss.12380

McDonald, T., Gann, G.D., Jonson, J. and Dixon, K.W. 2016. International standards for the practice of ecological restoration - including principles and key concepts. Society for Ecological Restoration, Washington, D.C. https://doi.org/10.1111/rec.12359

Menberu, M.W., Marttila, H., Ronkanen, A.K., Haghighi, A.T. and Kløve B. 2021. Hydraulic and physical properties of managed and intact peatlands: Application of the van Genuchten-Mualem models to peat soils. Water Resources Research 57:e2020WR028624. https://doi.org/10.1029/2020WR028624

Merten, J., Röll, A., Guillaume, T., Meijide, A., Tarigan, S., Agusta, H., Dislich, C., Dittrich, C., Faust, H., Gunawan, D., Hein, J., Hendrayanto, Knohl, A., Kuzyakov, Y., Wiegand, K. and Hölscher, D. 2016. Water scarcity and oil palm expansion: social views and environmental processes. Ecology and Society 21(2):5. https://doi.org/10.5751/ES-08214-210205

Morris, P.J., Davies, M.L., Baird, A.J., Balliston, N., Bourgault, M.-A., Clymo, R.S., Fewster, R.E., Furukawa, A.K., Holden, J., Kessel, E., Ketcheson, S.J., Kløve, B., Larocque, M., Marttila, H.,….Wilkinson, S.L. 2022. Saturated hydraulic conductivity in northern peats inferred from other measurements. Water Resources Research 58:e2022WR033181. https://doi.org/10.1029/2022WR033181

Murdiyarso, D., Lilleskov, E. and Kolkam R. 2019a. Tropical peatlands under siege: the need for evidence-based policies and strategies. Mitigation and Adaption Strategy for Global Change 24:493-505. https://doi.org/10.1007/s11027-019-9844-1

Murdiyarso, D., Saragi-Sasmito, M.F. and Rustini, A. 2019b. Greenhouse gas emissions in restored secondary tropical peat swamp forests. Mitigation and Adaption Strategy for Global Change 24:507-520. https://doi.org/10.1007/s11027-017-9776-6

Nusantara, R.W., Sudarmadji, S., Djohan, T.S. and Haryono, E. 2020. Impact of land-use change on soil carbon dynamics in tropical peatland, West Kalimantan Indonesia. Indonesian Journal of Geography 52:61-68. https://doi.org/10.22146/ijg.48451

Oosterband, R.J. and Nijland, H.J. 1994. Determining the saturated hydraulic conductivity. Chapter 12. In: Ritzema, H.P. (ed.), Drainage Principles and Applications. International Institute for Land Reclamation and Improvement (ILRI), Publication 16, second revised edition, 1994, Wageningen, The Netherlands. ISBN 9070754339.

Page, S.E., Rieley, J.O. and Banks, C.J. 2011. Global and regional importance of the tropical peatland carbon pool. Global Change Biology 17:798-818. https://doi.org/10.1111/j.1365-2486.2010.02279.x

Page, S.E. and Baird, A.J. 2016. Peatlands and global change: Response and resilience. Annual Review of Environment and Resources 41:35-57. https://doi.org/10.1146/annurev-environ-110615-085520

Putra, S.S., Baird, A.J. and Holden, J. 2022. Modelling the performance of bunds and ditch dams in the hydrological restoration of tropical peatlands. Hydrological Processes 36:e14470. https://doi.org/10.1002/hyp.14470

Reeve, A.S., Glaser, P.H. and Rosenberry, D.O. 2013. Seasonal changes in peatland surface elevation recorded with GPS stations in the Red Lake Peatlands, northern Minnesota, USA. Journal of Geophysical Research: Biogeosciences 118. https://doi.org/10.1002/2013JG002404

Rieley, J.O. 2007. Tropical peatland - the amazing dual ecosystem: coexistence and mutual benefit. Proceedings of the International Symposium and Workshop on Tropical Peatland. Gadjah Mada University, pp. 1-14.

Ritzema, H., Limin, S., Kusin, K., Jauhiainen, J. and Wösten, H. 2014. Canal blocking strategies for hydrological restoration of degraded tropical peatlands in Central Kalimantan, Indonesia. Catena 114:11-20. https://doi.org/10.1016/j.catena.2013.10.009

Sayok, A.K., Nik, A.R., Melling, L., Samad, R.A. and Efransjah, E. 2007. Some characteristics of peat in Loagan Bunut National Park, Sarawak, Malaysia. In: Rieley, J.O., Banks, C.J. and Ragjagukguk, B (eds), Proceedings of the International Symposium and Workshop in Tropical Peatland, Yogyakarta, 95-100.

Sazawa, K., Wakimoto, T., Fukushima, M., Yustiawati, Y., Syawal, M.S., Hata, N., Taguchi, S., Tanaka, S., Tanaka, D. and Kuramitz H. 2018. Impact of peat fire on the soil and export of dissolved organic carbon in tropical peat soil, Central Kalimantan, Indonesia. ACS Earth and Space Chemistry 2:692-701. https://doi.org/10.1021/acsearthspacechem.8b00018

Schwärzel, K., Renger, M., Sauerbrey, R. and Wessolek, G. 2002. Soil physical characteristics of peat soils. Journal of Plant Nutrition and Soil Science 165(4):479-486. https://doi.org/10.1002/1522-2624(200208)165:4<479::AID-JPLN479>3.0.CO;2-8

Sinclair, A.L., Graham, L.L.B., Putra, E.I., Saharjo, B.H., Applegate, G., Grover, S.P. and Cochrane, M.A. 2019. Effects of distance from canal and degradation history on peat bulk density in a degraded tropical peatland. Science of The Total Environment 699:134199. https://doi.org/10.1016/j.scitotenv.2019.134199

Smith, S.W., Rahman, N.E.B., Harrison, M.E., Shiodera, S., Giesen, W., Lampela, M., Wardle, D.A., Chong, K.Y., Randi, A.,… Lee, J.S.H. 2022. Tree species that 'live slow, die older' enhance tropical peat swamp restoration: Evidence from a systematic review. Journal of Applied Ecology 59:1950-1966. https://doi.org/10.1111/1365-2664.14232

Suter, G.W. 1999. Developing conceptual models for complex ecological risk assessments. Human and Ecological Risk Assessment: An International Journal 5:375-396. https://doi.org/10.1080/10807039991289491

Sutikno, S., Nasrul, B., Gunawan, H., Jayadi, R., Rinaldi, Saputra, E. and Yamamoto, K. 2019. The effectiveness of canal blocking for hydrological restoration in tropical peatland MATEC Web Conference 276:06003. https://doi.org/10.1051/matecconf/201927606003

Taufik, M., Torfs, P.J.J.F., Uijlenhoet, R., Jones, P.D., Murdiyarso, D. and Van Lanen, H.A.J. 2017. Amplification of wildfire area burnt by hydrological drought in the humid tropics. Nature Climate Change 7(6):428- 431. https://doi.org/10.1038/nclimate3280

Tonks, A.J., Aplin, P., Beriro, D.J., Cooper, H., Evers, S., Vane, C.H. and Sjögersten, S. 2017. Impacts of conversion of tropical peat swamp forest to oil palm plantation on peat organic chemistry, physical properties and carbon stocks. Geoderma 289:6-45. https://doi.org/10.1016/j.geoderma.2016.11.018

Urzainki, I., Palviainen, M., Hökkä, H., Persch, S., Chatellier, J., Wang, O., Mahardhitama, P., Yudhista, R. and Laurén, A. 2023. A process-based model for quantifying the effects of canal blocking on water table and CO2 emissions in tropical peatlands. Biogeosciences 20:2099-2116. https://doi.org/10.5194/bg-20-2099-2023

Wakhid, N., Hirano, T., Okimoto, Y., Nurzakiah, S. and Nursyamsi, D. 2017. Soil carbon dioxide emissions from a rubber plantation on tropical peat. Science of The Total Environment 581-582:857-865. https://doi.org/10.1016/j.scitotenv.2017.01.035

Wallor, E., Rosskopf, N. and Zeitz, J. 2018. Hydraulic properties of drained and cultivated fen soils, part I-Horizon-based evaluation of van Genuchten parameters considering the state of moorsh-forming process. Geoderma 313(1):69-81. https://doi.org/10.1016/j.geoderma.2017.10.026

Wells, J.A., Wilson, K.A., Abram, N.K., Nunn, M., Gaveau, D.L.A., Runting, R.K., Tarniati, N., Mengersen, K.L. and Meijaard, E. 2016. Rising floodwaters: mapping impacts and perceptions of flooding in Indonesian Borneo. Environmental Research Letters 11(6):064016. https://doi.org/10.1088/1748-9326/11/6/064016

Wosten, J.H.M., Clymans, E., Page, S.E., Rieley, J.O. and Limin, S.H. 2008. Peat-water inter-relationships in a tropical peatland ecosystem in Southeast Asia. Catena 73(2):212-224. https://doi.org/10.1016/j.catena.2007.07.010

Downloads

Submitted

09-12-2023

Accepted

18-02-2024

Published

01-04-2024

How to Cite

Mahardika, R. Y., Tarigan, S. D., Baskoro, D. P. T., Lovita, V., Gangga, A., Asyhari, A., Fatoni, A., Jepri, K., & Ravelle, A. P. (2024). Hydrological function of rewetted peatlands linked to saturated hydraulic conductivity in Kubu Raya, West Kalimantan, Indonesia . Journal of Degraded and Mining Lands Management, 11(3), 5717–5725. https://doi.org/10.15243/jdmlm.2024.113.5717

Issue

Section

Research Article