Characteristics and factors affecting surface and shallow landslides in West Java, Indonesia

Authors

DOI:

https://doi.org/10.15243/jdmlm.2022.101.3849

Keywords:

factors affecting landslide, frequency analysis, landslide characteristics, logistic regression, surface-shallow landslide

Abstract

Bogor, Cianjur, and Sukabumi areas of West Java Province, Indonesia, are vulnerable landslide areas. This study analyzes the landslide characteristic and the factors affecting landslides. The analysis was carried out on 148 landslides from 415 of 2018-2020 landslides, which were selected purposively by considering the heterogeneity of soil, geology, slope classes, land use type, and accessibility of landslide locations. Landslide characteristics and factors affecting landslides were analyzed using frequency analysis and binary logistic regression. The results showed that the most dominant characteristics of surface and shallow landslides were the landslides characterized by slopes >45%, Quaternary geological period, Andisol soil type, agriculture land use type, the occurrence of rain, and absence of earthquake. The dominant factors affecting surface and shallow landslides are human activities in land use, soil properties, steep-very steep slopes, Inceptisol and Entisol soil orders, young rocks (Quaternary geological period), rainfall events, and high earthquake magnitude.

Author Biographies

Yulia Amirul Fata, Forest Management Science, Graduate Study Program, IPB University

Forest Management Science

Hendrayanto Hendrayanto, Forest Management Department, IPB University

Forest Management

Budi Kuncahyo, Forest Management Department, IPB University

Forest Management

Erizal Erizal, Civil and Environmental Engineering Department, IPB University

Civil and Environmental Engineering

Suria Darma Tarigan, Soil and Land Resources Science Department, IPB University

Soil and Land Resources Science

References

Aditian, A., Kubota, T. and Shinohara, Y. 2018. Comparison of GIS-based landslide susceptibility models using frequency ratio, logistic regression, and artificial neural network in a tertiary region of Ambon, Indonesia. Geomorphology 318:101-111, doi:10.1016/j.geomorph.2018.06.006.

Arabia, T., Karim, A., Zainabun. and Sari I.P. 2015. Typic Hapludand soil characteristics at University Farm Unsyiah of Bener Meriah Regency. Agrosamudra 2(2):91-99 (in Indonesian).

Arbanas, S.M., KrkaÄ, M. and Bernat, S. 2016. Application of advanced technologies in landslide research in the area of the City of Zagreb (Croatia, Europe). Geologia Croatica. 69(2):231-243, doi: 10.4154/gc.2016.18.

BBSDLP (Center for Research and Development of Agricultural Land Resources (Balai Besar Penelitian dan Pengembangan Sumberdaya Lahan Pertanian)). 2016. Bogor (ID): BBSDLP (in Indonesian).

BBSDLP (Center for Research and Development of Agricultural Land Resources). 2019. Atlas of semi-detailed soil maps scale 1: 50 000. Bogor (ID): BBSDLP (in Indonesian).

BMKG (Meteorology Climatology and Geophysics Agency) [Internet]. http://dataonline.bmkg.go.id/ (in Indonesian).

BNPB (National Disaster Management Agency). 2019. National Disaster Data [Internet]. http://dibi.bnpb.go.id/ (in Indonesian).

Bordoni, M., Meisen, C., Valentino, R., Persichillo, M.G., Bitteli, M. and Chesich, S. 2016. The impact of hydrological parameters on modelling slope safety factor towards shallow landslides: a case study from Oltrepò Pavese. E3S Web Conferences 9:1-6, doi:10.1051/e3sconf/20160915005.

Broms, B.B. 1975. Landslides. Foundation Engineering Handbook. New York (US): Van Nostrand Reinhold Company.

Chang, J.M., Chen, H., Jou, B.J.D., Tsou, N.C. and Lin, G.W. 2017. Characteristics of rainfall intensity, duration, and kinetic energy for landslide triggering in Taiwan. Engineering Geology 231:81-87, doi:10.1016/j.enggeo.2017.10.006.

Dou, J., Paudel, U., Oguchi, T., Uchiyama, S. and Hayakawa, Y.S. 2015. Shallow and deep-seated landslide differentiation using support vector machines: a case study of the Chuetsu Area, Japan. Terrestrial, Atmospheric and Oceanic Sciences 2(26):227-239, doi:10.3319/TAO.2014.12.02.07.

Dwikorita, K., Teuku, F.F., Sudarno, I., Budi, A., Djoko, L. and Paul, W.B. 2011. Landslide hazard and community-based risk reduction effort in Karanganyar and the surrounding area, Central Java, Indonesia. Journal of Mountain Science8:149–153, doi:10.1007/s11629-011-2107-6.

Fata, Y.A., Hendrayanto, and Febrianti, N. 2022. Landslide frequency and its relationship with urban development in landform above groundwater basin area of Bogor, Indonesia. Journal of Degraded And Mining Lands Management 9(3):25002-2458. doi:10.15243/jdmlm.2022.093.3561.

Forte, G., Pirone, M., Santo, A., Nicotera, M.V. and Urciuoli, G. 2019. Triggering and predisposing factors for flow-like landslides in pyroclastic soils: The Lattari Mts. (southern Italy) case study. Engineering Geology 257:1-37, doi:10.1016/j.enggeo.2019.05.014.

Göktürkler, G., Balkaya, C. and Erhan, Z. 2008. Geophysical investigation of a landslides: The Altindag landslide site, Izmir (western Turkey). Journal of Applied Geophysics 65(2):84–96, doi:10.1016/j.jappgeo.2008.05.008.

Hardiyatmo, H.C. 2012. Landslides and Erosion: Occurrence and Management. Yogyakarta (ID): UGM Pr. (in Indonesian).

Hosmer, D.W. and Lemeshow, S. 2000. Applied Logistic Regression. Canada (US): John Wiley and Sons, Inc.

Kalantar, B., Pradhan, B., Naghibi, S.A., Motevalli, A. and Mansor, S. 2017. Assessment of the effects of training data selection on the landslide susceptibility mapping: a comparison between support vector machine (SVM), logistic regression (LR) and artificial neural networks (ANN). Geomatics, Natural Hazards and Risk 1-21, doi:10.1080/19475705.2017.1407368.

Lee, S. 2004. Application of likelihood ratio and logistic regression models to landslide susceptibility mapping using GIS. Environmental Management 34(2):223-232, doi:10.1007/s00267-003-0077-3.

Mezerreg, N.E.H., Kessasra, F., Bouftouha, Y., Bouabdallah, H., Bollot, N., Baghdad, A. and Bougdal, R. 2019. Integrated geotechnical and geophysical investigations in a landslide site at Jijel, Algeria. Journal of African Earth Sciences 160:1-12, doi:10.1016/j.jafrearsci.2019.103633.

Nordiana, M.M., Azwin, I.N., Nawawi, M.N.M.and Khalil, A.E. 2017. Slope failures evaluation and landslides investigation using 2-D resistivity method. NRIAG Journal of Astronomy and Geophysics 7(1):84-89, doi:10.1016/j.nrjag.2017.12.003.

Ojala, A.E.K., Mattila, J., Koivisto, M.M., Ruskeeniemi, T., Palmu, J.P. and Sutinen, R. 2017. Distribution and morphology of landslides in northern Finland: An analysis of postglacial seismic activity. Geomorphology 326:190-201, doi:10.1016/j.geomorph.2017.08.045.

Ollauri, A.G. and Mickovski, S.B. 2017. Hydrological effect of vegetation against rainfall-induced landslides. Journal of Hydrology 549:374-387, doi:10.1016/j.jhydrol.2017.04.014.

Peruccacci, S., Brunetti, M.T., Gariano, S.L., Melillo, M., Rossi, M. and Guzzetti, F. 2017. Rainfall thresholds for possible landslide occurrence in Italy. Geomorphology 290:39-57, doi:10.1016/j.geomorph.2017.03.031

Pourghasemi, H.R., Kornejady, A., Kerle, N. and Shabani, F. 2019. Investigating the effects of different landslide positioning techniques, landslide partitioning approaches, and presence-absence balances on landslide susceptibility mapping. Catena 1-15, doi:10.1016/j.catena.2019.104364.

Reichenbach, P., Rossi, M., Malamud, B.D., Mihir, M. and Guzzeti, F. 2018. A review of statistically-based landslide susceptibility methods. Earth-Science Reviews 180:60-91, doi:10.1016/j.earscirev. 2018.03.001.

Samia, J., Temme, A., Bregt, A., Jakob, W., Guzzetti, F., Ardizzone, F. and Rossi, M. 2017. Characterization and quantification of path dependency in landslide susceptibility. Geomorphology 292:16-24, doi:10.1016/j.geomorph.2017.04.039.

Santoso, B., Hasanah, M,U. and Setianto. 2019. Landslide investigation using self-potential method and electrical resistivity tomography (Pasanggrahan, South Sumedang, Indonesia). IOP Conferenc Series: Earth and Environmental Science 311(1-8), doi:10.1088/1755-1315/311/1/012068.

Sidle, C.R. and Ziegler, A.D. 2017. The canopy interception landslide initiation conundrum: insight from a tropical secondary forest in northern Thailand. Hydrology Earth System Science 21(1):651-667, doi:10.5194/hess-21-651-2017.

Su, L.J., Xu, X.Q., Geng, X.Y. and Liang, S.Q. 2016. An integrated geophysical approach for investigating hydro-geological characteristics of a debris landslide in the Wenchuan earthquake area. Engineering Geology 219:52-63, doi:10.1016/j.enggeo.2016.11.020.

Tanyas, H., Rossi, M., Alvioli, M., Westen, C.J.V. and Marchesini, I. 2018. A global slope unit-based method for the near real-time prediction of earthquake-induced landslides. Geomorphology 327:126-146, doi:10.1016/j.geomorph.2018.10.022.

Tebbens, S.F. 2019. Landslide scalling: a review. Earth and Space Science 1-12, doi: 10.1029/2019EA000662.

USGS (United States Geological Survey). 2020. Earthquake Data [Internet]. http://earthquake.usgs.gov/.

Weidner, L., Deprekel, K., Oommen, T. and Vitton, S. 2019. Investigating large landslides along a river valley using combined physical, statistical, and hydrologic modeling. Engineering Geology 259:1-44, doi:10.1016/j.enggeo.2019.105169.

Wistuba, M., Malik, I., Krzemien, K., Gorczyca, E., Sobucki, M., Walach, D.W. and Gawior, D. 2018. Can low-magnitude earthquakes act as a triggering factor for landslide activity? Examples from the Western Carpathian Mts, Poland. Catena 171:359-375, doi:10.1016/j.catena.2018.07.028.

Yalcinkaya, E., Alp, H., Ozel, O., Gorgun, E., Martino, S., Lenti, L., Bourdeau, C., Bigarre, P. and Coccia, S. 2016. Near-surface geophysical methods for investigating the Buyukcekmece landslide in Istanbul, Turkey. Journal of Applied Geophysics 134:23-35, doi:10.1016/j.jappgeo.2016.08.012.

Downloads

Submitted

03-06-2022

Accepted

26-07-2022

Published

01-10-2022

How to Cite

Fata, Y. A., Hendrayanto, H., Kuncahyo, B., Erizal, E., & Tarigan, S. D. (2022). Characteristics and factors affecting surface and shallow landslides in West Java, Indonesia. Journal of Degraded and Mining Lands Management, 10(1), 3849–3859. https://doi.org/10.15243/jdmlm.2022.101.3849

Issue

Section

Research Article