CO2 emissions of tropical peat soils under controlled groundwater table depths: A laboratory-based experiment
DOI:
https://doi.org/10.15243/jdmlm.2024.114.6135Keywords:
controlled condition, CO2 emission, groundwater table, peat soils, PVC experimentAbstract
The groundwater table (GWT) is widely recognized as a key factor influencing CO2 emissions in tropical peatlands. However, previous studies investigating this relationship have reported diverse results. This variability likely stems from the dynamic nature of field-based groundwater conditions. To address this, our study investigated the relationship between controlled GWT and CO2 emissions in a laboratory experiment using PVC columns filled with peat soil. GWT depths were adjusted to 20 cm, 30 cm, 40 cm, 50 cm, and 60 cm within a large container filled with peat pore water. CO2 emissions were measured using an Infra Red Gas Analyzer - Environmental Gas Monitoring-4 instrument, with a closed-chamber system. Our findings revealed significant differences in CO2 emissions between treatments, except for the transition from 20 cm to 30 cm GWT. Correlation analysis showed a positive correlation (R² = 0.25). Notably, CO2 emission factor values based on average yearly emission rates displayed a substantial increase with decreasing GWT, exhibiting a strong exponential relationship (R² = 0.99).
References
Andersen, R., Chapman, S.J. and Artz, R.R.E. 2013. Microbial communities in natural and disturbed peatlands: A review. Soil Biology and Biochemistry 57:979-994. https://doi.org/10.1016/j.soilbio.2012.10.003
Anshari, G. 2021. Circularity and singularity of tropical peat swamp forest ecosystems. In: Osaki, M., Tsuji, N., Foead, N. and Rieley, J. (eds.), Tropical Peatland Eco-management (pp. 463-475). Springer Singapore. https://doi.org/10.1007/978-981-33-4654-3_16
Byun, E., Rezanezhad, F., Fairbairn, L., Slowinski, S., Basiliko, N., Price, J.S., Quinton, W.L., Roy-Léveillée, P., Webster, K. and Van Cappellen, P. 2021. Temperature, moisture and freeze-thaw controls on CO2 production in soil incubations from northern peatlands. Scientific Reports 11(1):23219. https://doi.org/10.1038/s41598-021-02606-3
Carlson, K.M., Goodman, L.K. and May-Tobin, C.C. 2015. Modeling relationships between water table depth and peat soil carbon loss in Southeast Asian plantations. Environmental Research Letters 10(7):074006. https://doi.org/10.1088/1748-9326/10/7/074006
Cobb, A.R., Dommain, R., Tan, F., Heng, N.H.E. and Harvey, C.F. 2020. Carbon storage capacity of tropical peatlands in natural and artificial drainage networks. Environmental Research Letters 15(11):114009. https://doi.org/10.1088/1748-9326/aba867
Couwenberg, J., Dommain, R. and Joosten, H. 2010. Greenhouse gas fluxes from tropical peatlands in south-east Asia. Global Change Biology 16(6):1715-1732. https://doi.org/10.1111/j.1365-2486.2009.02016.x
Dariah, A., Marwanto, S. and Agus, F. 2014. Root-and peat-based CO2 emissions from oil palm plantations. Mitigation and Adaptation Strategies for Global Change 19(6):831-843. https://doi.org/10.1007/s11027-013-9515-6
Dossa, G.G.O., Paudel, E., Wang, H., Cao, K., Schaefer, D. and Harrison, R.D. 2015. Correct calculation of CO2 efflux using a closed-chamber linked to a non-dispersive infrared gas analyzer. Methods in Ecology and Evolution 6(12):1435-1442. https://doi.org/10.1111/2041-210X.12451
Furukawa, Y., Inubushi, K., Ali, M., Itang, A.M. and Tsuruta, H. 2005. Effect of changing groundwater levels caused by land-use changes on greenhouse gas fluxes from tropical peat lands. Nutrient Cycling in Agroecosystems 71(1):81-91. https://doi.org/10.1007/s10705-004-5286-5
Hirano, T., Jauhiainen, J., Inoue, T. and Takahashi, H. 2009. Controls on the carbon balance of tropical peatlands. Ecosystems 12(6):873-887. https://doi.org/10.1007/s10021-008-9209-1
Hirano, T., Kusin, K., Limin, S. and Osaki, M. 2014. Carbon dioxide emissions through oxidative peat decomposition on a burnt tropical peatland. Global Change Biology 20(2):555-565. https://doi.org/10.1111/gcb.12296
Hooijer, A., Page, S., Jauhiainen, J., Lee, W.A., Lu, X.X., Idris, A. and Anshari, G. 2012. Subsidence and carbon loss in drained tropical peatlands. Biogeosciences 9(3):1053-1071. https://doi.org/10.5194/bg-9-1053-2012
Hoyos-Santillan, J., Lomax, B.H., Large, D., Turner, B.L., Boom, A., Lopez, O.R. and Sjögersten, S. 2016. Quality not quantity: Organic matter composition controls of CO2 and CH4 fluxes in neotropical peat profiles. Soil Biology and Biochemistry 103:86-96. https://doi.org/10.1016/j.soilbio.2016.08.017
Huang, Y., Ciais, P., Luo, Y., Zhu, D., Wang, Y., Qiu, C., Goll, D.S., Guenet, B., Makowski, D., De Graaf, I., Leifeld, J., Kwon, M.J., Hu, J. and Qu, L. 2021. Tradeoff of CO2 and CH4 emissions from global peatlands under water-table drawdown. Nature Climate Change 11(7):618-622. https://doi.org/10.1038/s41558-021-01059-w
Husen, E., Salma, S. and Agus, F. 2014. Peat emission control by groundwater management and soil amendments: Evidence from laboratory experiments. Mitigation and Adaptation Strategies for Global Change 19(6):821-829. https://doi.org/10.1007/s11027-013-9526-3
Husnain, H., Wigena, I.G.P., Dariah, A., Marwanto, S., Setyanto, P. and Agus, F. 2014. CO2 emissions from tropical drained peat in Sumatra, Indonesia. Mitigation and Adaptation Strategies for Global Change 19(6):845-862. https://doi.org/10.1007/s11027-014-9550-y
Jaenicke, J., Rieley, J.O., Mott, C., Kimman, P. and Siegert, F. 2008. Determination of the amount of carbon stored in Indonesian peatlands. Geoderma 147(3-4):151-158. https://doi.org/10.1016/j.geoderma.2008.08.008
Jamaludin, J., Gusmayanti, E. and Anshari, G.Z. 2020. Carbon dioxide (CO2) emissions from small-scale farming on peatlands. Jurnal Ilmu Lingkungan 18(3):582-588 (in Indonesian). https://doi.org/10.14710/jil.18.3.582-588
Jauhiainen, J., Limin, S., Silvennoinen, H. and Vasander, H. 2008. Carbon dioxide and methane fluxes in drained tropical peat before and after hydrological restoration. Ecology 8(12):3503-3514. https://doi.org/10.1890/07-2038.1
Kurnianto, S., Warren, M., Talbot, J., Kauffman, B., Murdiyarso, D. and Frolking, S. 2015. Carbon accumulation of tropical peatlands over millennia: A modeling approach. Global Change Biology 21(1):431-444. https://doi.org/10.1111/gcb.12672
Marwanto, S. and Agus, F. 2014. Is CO2 flux from oil palm plantations on peatland controlled by soil moisture and/or soil and air temperatures? Mitigation and Adaptation Strategies for Global Change 19(6):809-819. https://doi.org/10.1007/s11027-013-9518-3
McCalmont, J., Kho, L.K., Teh, Y.A., Lewis, K., Chocholek, M., Rumpang, E. and Hill, T. 2021. Short-and long-term carbon emissions from oil palm plantations converted from logged tropical peat swamp forest. Global Change Biology 27(11):2361-2376. https://doi.org/10.1111/gcb.15544
Melling, L., Goh, K.J., Beauvais, C. and Hatano, R. 2007. Carbon flow and budget in a young mature oil palm agroecosystem on deep tropical peat. In: Rieley, J.O., Banks, C.J. and Radjagukguk, B. (eds.), Carbon-Climate-Human Interaction on Tropical Peatland, Proceedings of the International Symposium and Workshop on Tropical Peatland, Yogyakarta, 27-29 August 2007.
Murdiyarso, D., Hergoualc'h, K. and Verchot, L.V. 2010. Opportunities for reducing greenhouse gas emissions in tropical peatlands. Proceedings of the National Academy of Sciences 107(46):19655-19660. https://doi.org/10.1073/pnas.0911966107
Novita, N., Lestari, N.S., Lugina, M., Tiryana, T., Basuki, I. and Jupesta, J. 2021. Geographic setting and groundwater table control carbon emission from Indonesian peatland: A meta-analysis. Forests 12(7):832. https://doi.org/10.3390/f12070832
Nusantara, R.W., Hazriani, R. and Suryadi, U.E. 2018. Water-table depth and peat subsidence due to land-use change of peatlands. IOP Conference Series: Earth and Environmental Science 145:012090. https://doi.org/10.1088/1755-1315/145/1/012090
Othman, H., Mohammed, A.T., Darus, F.M., Harun, M.H. and Zambri, M.P. 2011. Best management practices for oil palm cultivation on peat: Ground water-table maintenance in relation to peat subsidence and estimation of CO2 emissions at Sessang, Sarawak. Journal of Oil Palm Research 23(2):1078-1086.
Saptomo, S.K., Setiawan, B.I., Chadirin, Y., Osawa, K., Nagano, T., Mizuno, K., Novarina, D., Sudarman, S. and Aruan, A. 2023. Patterns of CO2 emission from a drained peatland in Kampar Peninsula, Riau Province, Indonesia. In: Mizuno, K., Kozan, O. and Gunawan, H. (eds.), Vulnerability and Transformation of Indonesian Peatlands (pp. 89-101). Springer Nature Singapore. https://doi.org/10.1007/978-981-99-0906-3_5
Strack, M. and Waddington, J.M. 2007. Response of peatland carbon dioxide and methane fluxes to a water table drawdown experiment. Global Biogeochemistry Cycles 21:GB1007. https://doi.org/10.1029/2006GB002715
Teh, Y.A., Silver, W.L. and Conrad, M.E. 2005. Oxygen effects on methane production and oxidation in humid tropical forest soils. Global Change Biology 11(8):1283-1297. https://doi.org/10.1111/j.1365-2486.2005.00983.x
Turetsky, M.R., Benscoter, B., Page, S., Rein, G., Van Der Werf, G.R. and Watts, A. 2015. Global vulnerability of peatlands to fire and carbon loss. Nature Geoscience 8(1):11-14. https://doi.org/10.1038/ngeo2325
Van Noordwijk, M., Matthews, R., Agus, F., Farmer, J., Verchot, L., Hergoualc'h, K., Persch, S., Tata, H.L., Lusiana, B., Widayati, A. and Dewi, S. 2014. Mud, muddle and models in the knowledge value-chain to action on tropical peatland conservation. Mitigation and Adaptation Strategies for Global Change 19(6):887-905. https://doi.org/10.1007/s11027-014-9576-1
Warren, M., Hergoualc'h, K., Kauffman, J.B., Murdiyarso, D. and Kolka, R. 2017. An appraisal of Indonesia's immense peat carbon stock using national peatland maps: Uncertainties and potential losses from conversion. Carbon Balance and Management 12(1):12. https://doi.org/10.1186/s13021-017-0080-2
Webster, K.L., McLaughlin, J.W., Kim, Y., Packalen, M.S. and Li, C.S. 2013. Modelling carbon dynamics and response to environmental change along a boreal fen nutrient gradient. Ecological Modelling 248:148-164. https://doi.org/10.1016/j.ecolmodel.2012.10.004
Downloads
Submitted
Accepted
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Journal of Degraded and Mining Lands Management
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Submission of a manuscript implies: that the work described has not been published before (except in the form of an abstract or as part of a published lecture, or thesis) that it is not under consideration for publication elsewhere; that if and when the manuscript is accepted for publication, the authors agree to automatic transfer of the copyright to the publisher.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Scientific Journal by Eko Handayanto is licensed under a Creative Commons Attribution 4.0 International License.
Based on a work at https://ub.ac.id.
Permissions beyond the scope of this license may be available at https://ircmedmind.ub.ac.id/.