Drought-tolerant lines of Physalis angulata L. improved growth, yield, and water use efficiency in drylands

Authors

DOI:

https://doi.org/10.15243/jdmlm.2023.111.5017

Keywords:

dryland, environmental change, lines tolerant, water deficit, water use efficiency

Abstract

Cutleaf groundcherry (Physalis angulata L.) has the potential to be developed in various areas, including dryland. Information on drought-tolerant varieties, lines, or genotypes is needed for the development of cutleaf groundcherry in dryland. Selecting drought-tolerant lines is an alternative for alleviating yield loss potency caused by water shortages. A pot experiment that aimed to investigate the response of cutleaf groundcherry lines to a different level of water deficit, expressed in field capacity (FC), was run in two factors of factorial randomized block design. Each line (PA-01, PA-03, PA-05, PA-08) was set up in water deficit treatment (100, 80, 60, 40, and 20% FC). The result showed that vegetative growth and fruit production, such as fruit number and weight, mainly decreased at 60 or 40 % FC. In contrast, TSS increased at a higher water deficit which was in line with total flavonoid content, even inconsistently. PA-03 and PA-08 experienced a reduction in fruit weight at 40% FC, whereas other lines occurred at 60% FC. Water use efficiency (WUE) increased under severe water stress. Compared to other lines, PA-03 and PA-08 exhibit higher WUE at 60% FC. In conclusion, PA-03 and PA-08 lines were tolerant of water deficit.

Author Biographies

Wiwin Sumiya Dwi Yamika, Department of Agronomy, Faculty of Agriculture, Brawijaya University

Agronomy

Nevy Kusuma Dewi, Department of Agronomy, Faculty of Agriculture, Brawijaya University

Agronomy

Budi Waluyo, Department of Agronomy, Faculty of Agriculture, Brawijaya University

Agronomy

Nurul Aini, Department of Agronomy, Faculty of Agriculture, Brawijaya University

Agronomy

Husni Thamrin Sebayang, Department of Agronomy, Faculty of Agriculture, Brawijaya University

Agronomy

References

Abdelaziz, M.E. 2014. Specific leaf area, specific leaf weight, and photosynthetic parameters as indicators for water stress tolerance of sweet pepper colonized by Glomus mosseae. Current Science International 3(4):526-533.

Akhkha, A., Boutraa, T. and Alhejely, A. 2011. The rates of photosynthesis, chlorophyll content, dark respiration, proline, and abscisic acid (ABA) in wheat (Triticum durum) under water deficit conditions. International Journal of Agriculture and Biology 13(2):215-221.

Aliero, A.A. and Usman, H. 2016. Leaves of ground cherry (Physalis angulata L.) may be suitable in alleviating micronutrient deficiency. Food Science and Technology 4:89-94, doi:10.13189/fst.2016.040501.

Allahverdiyev, T. and Huseynova, I. 2017. Influence of water deficit on photosynthetic activity, dry matter partitioning, and grain yield of different durum and bread wheat genotypes. Cereal Research Communications 45(3):432-441, doi:10.1556/0806.45.2017.029.

Alomari-Mheidat, M., Corell, M., Castro-Valdecantos, P., Andreu, L., Moriana, A. and Martín-Palomo, M.J. 2023. Effect of water stress and rehydration on the cluster and fruit quality of greenhouse tomatoes. Agronomy 13(2):1-18, doi:10.3390/agronomy13020563.

Alordzinu, K.E., Appiah, S.A., AL Aasmi, A., Darko, R.O., Li, J., Lan, Y., Adjibolosoo, D., Lian, C., Wang, H., Qiao, S. and Liao, J. 2022. Evaluating the influence of deficit irrigation on fruit yield and quality indices of tomatoes grown in sandy loam and silty loam soils. Water 14:1-17, doi:10.3390/w14111753.

Alves, A.A.C. and Setter, T.L. 2004. Response of cassava leaf area expansion to water deficit: Cell proliferation, cell expansion, and delayed development. Annals of Botany 94(4):605-613, doi:10.1093/aob/mch179.

Atkins, C.A. and Smith, P.M.C. 2007. Translocation in legumes: Assimilates, nutrients, and signaling molecules. Plant Physiology 144(2):550-561, doi:10.1104/pp.107.098046.

Ayodhyareddy, P. and Rupa, P. 2016. Ethno medicinal, phytochemical and therapeutic importance of Physalis angulata L.: A review. Journal of Science and Research 5(5):2122–2127, doi:10.21275/v5i5.nov163891.

Bai, C., Zuo, J., Watkins, C.B., Wang, Q., Liang, H., Zheng, Y., Liu, M. and Ji, Y. 2023. Sugar accumulation and fruit quality of tomatoes under water deficit irrigation. Postharvest Biology and Technology 195:1-13, doi:10.1016/j.postharvbio.2022.112112.

Berman, M.E. and Dejong, T.M. 1996. Water stress and crop load effects on fruit fresh and dry weights in peach (Prunus persica). Tree Physiology 16(10):859-864, doi:10.1093/treephys/16.10.859.

Bertin, N. 2005. Analysis of the tomato fruit growth response to temperature and plant fruit load in relation to cell division, cell expansion and DNA endoreduplication. Annals of Botany 95(3):439-447, doi:10.1093/aob/mci042.

Chen, S., Zhou, Z.J., Andersen, M.N. and Hu, T.T. 2015. Tomato yield and water use efficiency – coupling effects between growth stage specific soil water deficits. Acta Agriculturae Scandinavica Section B: Soil and Plant Science 65(5):460-469, doi:10.1080/09064710.2015. 1024279.

Delfin, E.F., Drobnitch, S.T. and Comas, L.H. 2021. Plant strategies for maximizing growth during water stress and subsequent recovery in Solanum melongena L. (eggplant). PLoS One 16(9):1-18, doi:10.1371/ journal.pone.0256342.

Farooq, M., Wahid, A., Kobayashi, N., Fujita, D. and Basra, S.M.A. 2009. Plant drought stress: effects, mechanisms and management. Agronomy for Sustainable Development 29(1):185-212, doi:10.1051/ agro:2008021.

Fischer, G., Ramírez, F. and Casierra-Posada, F. 2016. Ecophysiological aspects of fruit crops in the era of climate change. A review. Agronomia Colombiana 34(2):190-199, doi:10.15446/agron.colomb.v34n. 56799.

Galmés, J., Medrano, H. and Flexas, J. 2007. Photosynthetic limitations in response to water stress and recovery in Mediterranean plants with different growth forms. New Phytologist 175(1):81-93, doi:10.1111/j.1469-8137.2007.02087.x.

Hummel, I., Pantin, F., Sulpice, R., Piques, M., Rolland, G., Dauzat, M., Christophe, A., Pervent, M., Bouteillé, M., Stitt, M., Gibon, Y. and Muller, B. 2010. Arabidopsis plants acclimate to water deficit at low cost through changes of carbon usage: An integrated perspective using growth, metabolite, enzyme, and gene expression analysis. Plant Physiology 154(1):357-372, doi:10.1104/pp.110.157008.

Ismail, S. 2010. Influence of deficit irrigation on water use efficiency and bird pepper production (Capsicum annuum L.). Journal of King Abdulaziz University-Meteorology, Environment and Arid Land Agriculture Sciences 21(2):29-43, doi:10.4197/met.21-2.3.

Jin, N., Jin, L., Wang, S., Meng, X., Ma, X., He, X., Zhang, G., Luo, S., Lyu, J. and Yu, J. 2022. A comprehensive evaluation of effects on water-level deficits on tomato polyphenol composition, nutritional quality, and antioxidant capacity. Antioxidants 11(8):1-16, doi:10.3390/antiox11081585.

Kasali, F.M., Tusiimire, J., Kadima, J.N., Tolo, C.U., Weisheit, A. and Agaba, A.G. 2021. Ethnotherapeutic uses and phytochemical composition of Physalis peruviana L.: An overview. The Scientific World Journal 2021:1-22, doi:10.1155/2021/5212348.

Khalil, A.M., Murchie, E.H. and Mooney, S.J. 2020. Quantifying the influence of water deficit on root and shoot growth in wheat using X-ray computed tomography. AoB Plants 12(5):1-13, doi:10.1093/aobpla/plaa036.

Liu, J., Hu, T., Feng, P., Wang, L. and Yang, S. 2019. Tomato yield and water use efficiency change with various soil moisture and potassium levels during different growth stages. PLoS One 14(3):1-14, doi:10.1371/journal.pone.0213643.

Luo, Y.Z., Li, G., Yan, G., Liu, H. and Turner, N.C. 2020. Morphological features and biomass partitioning of lucerne plants (Medicago sativa L.) subjected to water stress. Agronomy 10(3):1-10, doi:10.3390/ agronomy10030322.

Medyouni, I., Zouaoui, R., Rubio, E., Serino, S., Ben Ahmed, H., and Bertin, N. 2021. Effects of water deficit on leaves and fruit quality during the development period in tomato plants. Food Science and Nutrition 9(4):1949-1960, doi:10.1002/fsn3.2160.

Nahar, K. and Ullah, S.M. 2018. Drought stress effects on plant water relations, growth, fruit quality, and osmotic adjustment of tomato (Solanum lycopersicum) under subtropical conditions. Asian Journal of Agricultural and Horticultural Research 1(2):1-14, doi:10.9734/ajahr/2018/39824.

Ödemiş, B. and Candemir, D.K. 2022. The effect of water stress on cotton leaf area and leaf morphology. KSU Journal of Agriculture and Nature 26(1):140-149, doi:10.18016/ksutarimdoga.vi.992764.

Ohashi, Y., Saneoka, H. and Fujita, K. 2000. Effect of water stress on growth, photosynthesis, and photoassimilate translocation in soybean and tropical pasture legume siratro. Soil Science and Plant Nutrition 46(2):417-425, doi:10.1080/00380768.2000.10408795.

Ozaslan, C., Farooq, S., Onen, H., Bukun, B., Ozcan, S. and Gunal, H. 2016. Invasion potential of two tropical Physalis species in arid and semi-arid climates: Effect of water-salinity stress and soil types on growth and fecundity. PLoS One 11(10):1-23, doi:10.1371/journal.pone.0164369.

Pirastehâ€Anosheh, H., Saedâ€Moucheshi, A., Pakniyat, H. and Pessarakli, M. 2016. Stomatal responses to drought stress. In: Ahmad, P. (ed.), Water Stress and Crop Plants: A Sustainable Approach. John Wiley & Sons, Ltd. pp.24-40, doi:10.1002/9781119054450.ch3.

Prudent, M., Bertin, N., Génard, M., Muños, S., Rolland, S., Garcia, V., Petit, J., Baldet, P., Rothan, C. and Causse, M. 2010. Genotype-dependent response to carbon availability in growing tomato fruit. Plant, Cell and Environment 33(7):1186-1204, doi:10.1111/j.1365-3040.2010.02139.x.

Sakya, A., Sulistyaningsih, E., Indradewa, D. and Purwanto, B. 2015. Assimilate distribution and specific leaf area of tomato plants in response to ZnSO4 application under two watering intervals. Jurnal Hortikultura 25(4):311-317, doi:10.21082/jhort.v25n4.2015.p311-317 (in Indonesian).

Seleiman, M.F., Al-Suhaibani, N., Ali, N., Akmal, M., Alotaibi, M., Refay, Y., Dindaroglu, T., Abdul-Wajid, H.H. and Battaglia, M.L. 2021. Drought stress impacts on plants, and different approaches to alleviate its adverse effects. Plants 10(2):1-25, doi:10.3390/plants10020259.

Shenstone, E., Lippman, Z. and Van Eck, J. 2020. A review of nutritional properties and health benefits of Physalis species. Plant Foods for Human Nutrition 75(3):316-325, doi:10.1007/s11130-020-00821-3.

Travlos, I.S. 2012. Invasiveness of cut-leaf ground-cherry (Physalis angulata L.) populations and impact of soil water and nutrient availability. Chilean Journal of Agricultural Research 72(3):358-363, doi:10.4067/s0718-58392012000300009.

Widaryanto, E., Roviq, M. and Saitama, A. 2019. An effective method of leaf area measurement of sweet potatoes. Bioscience Research 16(2):1423-1431.

Włodarczyk, T., Stepniewski, W., Brzeziñska, M. and Przywara, G. 2009. Impact of different aeration conditions on the content of extractable nutrients in soil. International Agrophysics 22(4):371-375.

Downloads

Submitted

04-05-2023

Accepted

21-06-2023

Published

30-09-2023

How to Cite

Yamika, W. S. D., Dewi, N. K., Waluyo, B., Aini, N., & Sebayang, H. T. (2023). Drought-tolerant lines of Physalis angulata L. improved growth, yield, and water use efficiency in drylands. Journal of Degraded and Mining Lands Management, 11(1), 5017–5024. https://doi.org/10.15243/jdmlm.2023.111.5017

Issue

Section

Research Article

Most read articles by the same author(s)