DEM classifications: opportunities and potential of its applications

Authors

  • Atriyon Julzarika Indonesian National Institute of Aeronautics and Space (LAPAN)
  • D Djurdjani

DOI:

https://doi.org/10.15243/jdmlm.2019.064.1897

Keywords:

DEM classification, non-terrestrial, terrestrial, Rote islands, vertical accuracy

Abstract

DEM is a digital model that provides topographic information. DEM can be made from terrestrial surveys, aerial photography, video, optical, and radar satellites, LIDAR and multidata combination. In general, DEM can be in the form of DSM and DTM. This study aims to explain the classification of DEM based on terrestrial and non-terrestrial, the methods of DEM extraction, vertical accuracy, data formats, and technological trends. The methods of DEM extraction discussed include stereo, interferometry, DEM combination, videogrammetry, and terrestrial data interpolation. In addition, a comparison of vertical accuracy is also carried out with several methods of its extraction. DEM can be used for various applications involving land surface, especially for 3D modeling, spatial planning, geology, topography, and so on. This DEM is used to support the activities of inland waters on Rote islands.

Author Biography

Atriyon Julzarika, Indonesian National Institute of Aeronautics and Space (LAPAN)

Remote Sensing Applications Center, LAPAN

References

Amans, O.C., Beiping, W. and Yevenyo, Z.Y. 2013. Assessing vertical accuracy of SRTM Ver 4.1 and ASTER GDEM Ver 2 using differential GPS measurements - case study in Ondo State Nigeria. International Journal of Scientific and Engineering Research 4: 523–531.

ASPRS. 2014. ASPRS Accuracy Standard for Digital Geospatial Data. ASPRS. USA.

Bignone, F. and Umakawa, H. 2008. Assessment of ALOS PRISM digital elevation model extraction over Japan, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII, Beijing, China.

DLR. 2010. SRTM-DLR. German Aerospace Center. Germany.

Du, Z., Ge, L., Ng, A.H., Zhu, Q., Yang, X. and Li, L. 2018. Correlating the Subsidence Pattern and Land Use in Bandung, Indonesia with Both Sentinel-1/2 and ALOS-2 Satellite Images. International Journal of Applied Earth Observation and Geoinformation 67: 54–68. https://doi.org/ 10.1016/j.jag. 2018.01.001.

ESA. 2007. InSAR Principles: Guidelines for SAR Interferometry Processing and Interpretation. ESA. Netherland.

Gesch, D. 2005. Vertical Accuracy of SRTM Data of the Accuracy of SRTM Data of the United States: Implications for Topographic Change Detection, SRTM Data Validation and ApplicationsWorkshop.

Gillani, C. and Wolf, P.R. 2006. Adjustment Computation: Spatial Data Analysis. John Wiley & Sons, Inc., Hoboken, New Jersey. USA.

Hengl, T. and Evans, I.S. 2009. Mathematical and digital models of the land surface. In: Hengl, T., Reuter, H.I. (Eds.), Geomorphometry: Concepts, Software, Applications. Elsevier, Amsterdam, pp. 31–63

Hoffmann, J. and Walter, D. 2006. How Complementary are SRTM-X and C- Band Digital Elevation Models? Journal of Photogrammetric & Remote Sensing. ASPRS. USA.

Hoja, D. and D'Angelo, P, 2010. Analysis of Dem Combination Methods Using High Resolution Optical Stereo Imagery and Interferometric SAR Data. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, Volume XXXVIII, Part 1, Calgary, Canada.

Hoja, D., Reinartz, P. and Schroeder, M. 2005, Comparison of Dem Generation And Combination Methods Using High Resolution Optical Stereo Imagery and Interferometric SAR Data, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, Volume XXXVI, Part 1, Paris, France.

Honikel, M. 1998. Fusion of Optical and Radar Digital Elevation Models in the Spatial Frequency Domain, Workshop ESTEC.

Hutchinson, M.F. and Gallant, J.C. 2000. Digital elevation models and representation of terrain shape. In: Wilson, J.P., Gallant, J.C. (Eds.), Terrain Analysis: Principles and Applications. John Wiley and Sons, New York, pp. 29–50.

JAXA. 2006. Annual Report 2005, EORC Bulletin, No. 9, March 2006. Tokyo. Japan.

Jones, C.B. 2013. Geographical Information Systems and Computer. Cartography. Routletge. New York. USA

Julzarika, A. 2010. Teknik Pemodelan 3D Citra Satelit Lapan Tubsat dengan Videogrammetri (Studi Kasus: Gunung Semeru). Jurnal Widya Riset. LIPI.

Julzarika, A. 2015. Height Model Integration Using Alos PALSAR, X SAR, SRTM C, and ICESAT/GLAS. International Jornal of Remote Sensing and Earth Sciences. DOI: http://dx.doi.org/10.30536/j.ijreses.2015.v12.a2691,

Julzarika, A. and Dewi, E.K. 2018. Uji ketelitian DTM ALOS PALSAR terhadap pengukuran kombinasi DGNSS-Altimeter. Jurnal Penginderaan Jauh dan Pengolahan Data Citra Digital. DOI: http://dx.doi.org/10.30536/j.pjpdcd.2018.v15.a2804

Julzarika, A. and Sudarsono, B. 2009. Differential of Digital Surface Model (DSM) into Digital Elevation Model (DEM) of the ALOS PALSAR. Journal of Teknik University of Diponegoro. Semarang. Indonesia.

Karkee, M., Kusanagi, M. and Steward, B.L. 2006. Fusion of Optical and InSAR DEMs: Improving the Quality of Free Data. ASABE Paper No. 0611722. St. Joseph, Mich.: ASABE.

Keydel, W., Hounam, D., Pac, R. and Werner, M. 000. X-SAR/SRTM Part of a Global Earth Mapping Mission, the RTO SET Symposium on “Space-Based Observation Technologyâ€, Island of Samos, Greece.

Kienzle, S. 2004. The effect of DEM raster resolution on first order, second order, and compound terrain derivatives. Transactions in GIS 8, 83–111.

Konecny, G. and Lehmann, G. 1984. die Photogrammetrie, Walter de Gruyter & Co., Berlin, Germany.

Leica Geosystems, 2002. Imagine OethoBase User`s Guide, GIS and Mapping Division, Atlanta, Georgia, USA.

Li, Z., Zhu, Q. and Gold, C. 2005. Digital Terrain Modeling Principles and Methodology. CRC Press. Florida. USA.

Lusch, D.P. 1999. Introduction to Microwave Remote Sensing. Center for Remote Sensing. Michigan University. USA.

Martha, T.R., Kerle, N., Jetten, V., van Westen, C.J. and Kumar, K.V. 2010. Characterising spectral, spatial and morphometric properties of landslides for semi-automatic detection using object-oriented methods. Geomorphology 116: 24–36.

Maune, D.F. and Nayegandhi, A. 2018. Digital Elevation Model-DEM Users Manual. Digital Elevation Model Technologies and Applications. 3rd edition. ASPRS. USA.

Montgomery, D.R. and Dietrich, W.E. 1989. Source areas, drainage density, and channel initiation. Water Resources Research 25: 1907–1918

Montgomery, D.R. and Dietrich, W.E. 1992. Channel initiation and the problem of landscape scale. Science 255: 826–830.

Mukti, F.Z., Harintaka, and Djurdjani, 2018. Evaluasi hasil integrasi berbagai ketelitian data model elevasi digital. Geomatika 24(1): 39-48. http://dx.doi.org/10.24895/JIG.2018.24-1.793

Naidoo, L., Mathieu, R., Main, R., Wessels, K. and Asner, G.P 2016. L-band synthetic aperture radar imagery performs better than optical datasets at retrieving woody fractional cover in deciduous, dry savannahs. International Journal of Applied Earth Observation and Geoinformation 52: 54–64. https://doi.org/10.1016/j.jag.2016.05.006

Nelson, A., Reuter, H.I. and Gessler, P. 2009. DEM production methods and sources. In: Hengl, T., Reuter, H.I. (Eds.), Geomorphometry: Concepts, Software, and Applications. Elsevier, Amsterdam, pp. 65–85.

Petrie, G. and Kennie T. 1987. An introduction to terrain modeling: applications and terminology. Universitas Glasgow, Scotland.

Polcari, M., Fernández, J., Albano, M., Bignami, C., Palano, M. and Stramondo, S. 2017. an improved data integration algorithm to constrain the 3D displacement field induced by fast deformation phenomena tested on the Napa Valley earthquake. Computers and Geosciences 109: 206–15. https://doi.org/10.1016/j.cageo.2017.09.002.

Raaflaub, L.D. and Collins, M.J. 2006. The effect of error in gridded digital elevation models on the estimation of topographic parameters. Environmental Modeling and Software 21: 710–732.

Schneider, M., Lehner, M., Muller, R. and Reinartz, P. 2008. Stereo Evaluation of ALOS/PRISM Data on ESA-AO Test Sites – First DLR Results, ALOS Symposium, Rhodos.

Sefercik, U. and Jacobsen, K. 2006. Analysis of SRTM Height Models. Workshop SRTM Berlin. Germany.

Sheng, J., Wilson, J.P., Chen, N., Devinny, J.S. and Sayre, J.M. 2007. Evaluating the quality of the National Hydrography Dataset for watershed assessments in metropolitan regions. GIScience and Remote Sensing 44: 283–304.

Trisakti, B. and Julzarika, A. 2010. Pengembangan Metode Penggabungan Data DEM SRTM, ALOS Prism, dan Peta Topografi. PKPP. Kemenristek.

Vanicek, P. and Krakiwsky, E. 1986. Geodesy, the concepts. North-Holland, Amsterdam, NY, Oxford, Tokyo.

Wilson, J.P. 2012. Digital Terrain Modeling. Geomorphology 137 107–121. ScienceDirect.

Xin, X., Liu, B., Di, K., Jia, M. and Oberst, J. 2018. High-precision co-registration of orbiter imagery and digital elevation model constrained by both geometric and photometric information. ISPRS Journal of Photogrammetry and Remote Sensing 144: 28–37. https://doi.org/10.1016/j.isprsjprs.2018.06.016.

Yastikh, E. 2006. Accuracy and Morphological Analyses of GTOPO30 and SRTM X-C band DEMS in the Test Area Istanbul. ISPRS Workshop, Ankara, Turkey.

Zhang, W.H. and Montgomery, D.R. 1994. Digital elevation model grid size, landscape representation, and hydrological simulations. Water Resources Research 30: 1019–1028.

Downloads

Submitted

29-05-2019

Accepted

25-06-2019

Published

30-06-2019

How to Cite

Julzarika, A., & Djurdjani, D. (2019). DEM classifications: opportunities and potential of its applications. Journal of Degraded and Mining Lands Management, 6(4), 1897–1905. https://doi.org/10.15243/jdmlm.2019.064.1897

Issue

Section

Research Article