Landslide susceptibility analysis on road sections in Kaligesing District, Indonesia, using Frequency Ratio (FR) approaches

Authors

  • Rianita Pertiwi Geoinformation Study for Disaster Management and Spatial Planning, The Graduate School of Gadjah Mada University, Yogyakarta, Indonesia
  • Junun Sartohadi Department of Soil Science, Gadjah Mada University, Yogyakarta, Indonesia
  • M. Anggri Setiawan Department of Environmental Geography, Gadjah Mada University, Yogyakarta, Indonesia
  • Edwin Maulana Research Center for Land Resources Management, Gadjah Mada University, Yogyakarta, Indonesia

DOI:

https://doi.org/10.15243/jdmlm.2025.124.7913

Keywords:

frequency ratio, geospatial, Kaligesing, landslide susceptibility, road section

Abstract

Road construction with intensive slope cutting increases landslide susceptibility along the road section, especially in hilly areas such as Kaligesing, Indonesia. This study aimed to compile a landslide susceptibility map along the road section in Kaligesing and evaluate the level of susceptibility based on the main causal factors. GIS approach and quantitative statistical analysis Frequency Ratio (FR) were used in the susceptibility model. Eighty-two landslide points were randomly divided into training (70%) and testing (30%) datasets. Twelve causal factors were used in the analysis: slope direction, elevation, lithology, slope gradient, curvature, hemeroby degree, Topographic Wetness Index (TWI), distance from the river, distance from the road, rainfall, soil texture, and soil aggregate. Model validation used the Area Under Curve (AUC) value to evaluate model performance. The findings showed that the model is accurate, with an AUC value of 0.75 for the training set and 0.71 for the testing set. Furthermore, the level of landslide susceptibility is divided into four classes, namely very high (73 km), high (70.77 km), moderate (0.07 km), and very low (0.03 km). Thus, the findings can be used to support decision-making and planning for more adaptive road infrastructure development in landslide-prone areas.

References

Ado, M., Amitab, K., Maji, A.K., Jasinska, E., Gono, R., Leonowicz, Z. and Jasinski, M. 2022. Landslide susceptibility mapping using machine learning: A literature survey. Remote Sensing 14(13), doi:10.3390/rs14133029.

Amalia, P., Suprayogi, Y., Azis, Y., Hermawan, W., Pamungkas, E., Nurzaman, A. and Priyono, A.F. 2021. Analysis of the economic and social impact of infrastructure development in Indonesia. Journal of Infrastructure Policy and Management 4(1):1-11, doi:10.35166/jipm.401.0015 (in Indonesian).

Arabameri, A., Pradhan, B. and Lombardo, L. 2019. Comparative assessment using boosted regression trees, binary logistic regression, frequency ratio and numerical risk factor for gully erosion susceptibility modelling. Catena 183, doi:10.1016/j.catena.2019.104223.

BNPB (Badan Nasional Penanggulangan Bencana). 2023. Disaster Risk Assessment Document for 2018-2022, National Board for Disaster Management of the Republic of Indonesia (in Indonesian).

Conforti, M. and Ietto, F. 2021. Modeling shallow landslide susceptibility and assessment of the relative importance of predisposing factors, through a GIS?based statistical analysis. Geosciences (Switzerland) 11(8), doi:10.3390/geosciences11080333.

Erzagian, E., Wilopo, W. and Fathani, T.F. 2023. Landslide susceptibility zonation using GIS-based frequency ratio approach in the Kulon Progo mountains area, Indonesia. Progress in Landslide Research and Technology 2(2):115-126, doi:10.1007/978-3-031-44296-4_3.

Fan, H., Lu, Y., Hu, Y., Fang, J., Lv, C., Xu, C., Feng, X. and Liu, Y. 2022. A landslide susceptibility evaluation of highway disasters based on the frequency ratio coupling model. Sustainability (Switzerland) 14(13), doi:10.3390/su14137740.

Goma, E.I., Sunimbar, S. and Angin, I.S. 2022. Geological analysis of landslides in Wolotolo Village, Detusoku District, Ende Regency. Jurnal Pendidikan Geografi 9(2):10-24, doi:10.20527/jpg.v9i2.13471 (in Indonesian).

HaileFekadu, G., Melese, D.T. and Weldesenbet, T.T. 2022. Landslide susceptibility assessment using GIS on rock-soil slope along Zabidar mountain road corridors, Ethiopia. Geopersia 12(2):201-222, doi:10.22059/ geope.2022.337838.648645.

Hao, L., Qing, L. and Peijun, L. 2023. Field test and structural stability analysis of multi-stage slope based on seepage coupling theory. European Journal of Computational Mechanics 32(3):235-262, doi:10.13052/ejcm2642-2085.3232.

Haque, U., da Silva, P.F., Devoli, G., Pilz, J., Zhao, B., Khaloua, A., Wilopo, W., Andersen, P., Lu, P., Lee, J., Yamamoto, T., Keellings, D., Jian-Hong, W. and Glass, G.E. 2019. The human cost of global warming: Deadly landslides and their triggers (1995-2014). Science of The Total Environment 682:673-684, doi:10.1016/j.scitotenv.2019.03.415.

Hussain, B.I. and Kaiser, B. 2023. Landslide hazard zonation using bivariate frequency ratio method along National highway-1 from Baramulla-Uri Road stretch, North Kashmir Himalayas, India. Disaster Advances 16(6):8-17, doi:10.25303/1606da08017.

Inabi, O., Attou, M., Benzaazoua, M. and Qachar, M. 2023. Design of cost-effective and sustainable treatments of old landslides adapted to the Moroccan road network: A case study of regional road R410 crossing the Rifan structural domain. Water (Switzerland) 15(13), doi:10.3390/w15132423.

Jasinaviciute, A. and Veteikis, D. 2022. Assessing landscape instability through land-cover change based on the Hemeroby Index (Lithuanian example). Land 11(7), doi:10.3390/land11071056.

Jayakody, S.H.S. and Kumarage, B. 2025. Application of subsurface drainage for cost-effective mitigation strategies?: A case study of Hakgala landslide, Sri Lanka. Progress in Landslide Research and Technology 3(2), doi:10.1007/978-3-031-72736-8_11.

Jennifer, J.J., Saravanan, S. and Abijith, D. 2021. Application of frequency ratio and logistic regression model in the assessment of landslide susceptibility mapping for Nilgiris District, Tamilnadu, India. Indian Geotechnical Journal 51(4):773-787.

Kadi, F. and Yilmaz, O.S. 2024. Determination of alternative forest road routes using produced landslide susceptibility maps: A case study of Tonya (Trabzon), Turkiye. International Journal of Engineering and Geosciences 9(2):147-164, doi:10.26833/ijeg.1355615.

Kebeba, O., Shano, L., Chemdesa, Y. and Jothimani, M. 2024. Integration of geospatial analysis, frequency ratio, and analytical hierarchy process for landslide susceptibility assessment in the maze catchment, Omo valley, southern Ethiopia. Quaternary Science Advances 15, doi:10.1016/j.qsa.2024.100203.

Khan, I., Kainthola, A., Bahuguna, H. and Asgher, Md. S. 2024. Comparative landslide susceptibility assessment using information value and frequency ratio bivariate statistical methods: a case study from Northwestern Himalayas, Jammu and Kashmir, India. Arabian Journal of Geosciences 17(8), doi:10.1007/s12517-024-12022-2.

Li, Y. and Duan, W. 2024. Decoding vegetation’s role in landslide susceptibility mapping: An integrated review of techniques and future directions. Biogeotechnics 2(1), doi:10.1016/j.bgtech.2023.100056.

Liu, Y., Zhao, L., Bao, A., Li, J. and Yan, X. 2022. Chinese high resolution satellite data and GIS-based assessment of landslide susceptibility along highway G30 in Guozigou valley using logistic regression and MaxEnt model. Remote Sensing 14(15), doi:10.3390/rs14153620.

Ma, Z. and Mei, G. 2021. Deep learning for geological hazards analysis: Data, models, applications, and opportunities. Earth-Science Reviews 223, doi:10.1016/j.earscirev.2021.103858.

Maulana, E., Sartohadi, J. and Setiawan, M.A. 2023. Soil conservation at the gully plot scale in the tropical volcanic landscape of Sumbing. AIMS Environmental Science 10:832-846, doi:10.3934/ environsci.2023045.

Maulana, E., Sartohadi, J. and Setiawan, M.A. 2025. Landscape design for gully erosion control on the upper slopes of Mount Sumbing, Central Java, Indonesia. Journal of Degraded and Mining Lands Management 12(2):7037-7047, doi:10.15243/jdmlm.2025.122.7037.

Maulana, E., Wulan, T.R., Wahyunungsih, D.S., Ibrahim, F., Putra, A. S. and Putra, M.D. 2017. Geoecology identification using Landsat 8 for spatial planning in north Sulawesi Coastal. Indonesian Journal of Geography 49(2):212-217, doi:10.22146/ijg.13189.

Mersha, T. and Meten, M. 2020. GIS-based landslide susceptibility mapping and assessment using bivariate statistical methods in Simada area, northwestern Ethiopia. Geoenvironmental Disasters 7(1), doi:10.1186/s40677-020-00155-x.

Mey, J., Guntu, R.K., Plakias, A., Silva de Almeida, I. and Schwanghart, W. 2023. More than one landslide per road kilometer – surveying and modelling mass movements along the Rishikesh-Joshimath (NH-7) highway, Uttarakhand, India. Natural Hazards and Earth System Science, doi:10.5194/nhess-2022-295.

Moragues, S., Lenzano, M.G., Jeanneret, P., Gil, V. and Lannutti, E. 2024. Landslide susceptibility mapping in the Northern part of Los Glaciares National Park, Southern Patagonia, Argentina using remote sensing, GIS and frequency ratio model. Quaternary Science Advances 13:100146, doi:10.1016/j.qsa.2023.100146.

Nirwansyah, A.W., Utami, M., Suwarno, and Hidayatullah, T. 2015. Analysis of landslide distribution patterns in Somagede District using geographic information systems. Journal of Geomatics and Planning 2:1-9, doi:10.14710/geoplanning.2.1.1-9 (in Indonesian).

Noviyanto, A., Sartohadi, J. and Purwanto, B.H. 2020. The distribution of soil morphological characteristics for landslide-impacted Sumbing Volcano, Central Java-Indonesia. Geoenvironmental Disasters 7(1), doi:10.1186/s40677-020-00158-8.

Prita, A., Suprayogi, Y., Aziz, Y., Hermawan, W, Pamungkas, E., Nurzaman, A. and Fauzan, P.A. 2021. Analysis of the economic and social impact of infrastructure development in Indonesia. Journal of Infrastructure Policy and Management 4(1):1-11, doi:110.35166/jipm.401.0015 (in Indonesian).

Saddam, M., Anggraini, V. and Yuliet, R. 2025. Design of MSE Wall with geotextile reinforcement for temporary mitigation of landslide in Padang Panjang – Sicincin road (STS 64+100). The 4th ICDM 2024, E3S Web of Conferences 604:16004, doi:10.1051/ e3sconf/202560416004.

Senthilkumar, H. and Selvaraj, E.N. 2025. GIS-based frequency ratio and Shannon entropy modeling for landslide susceptibility mapping?: A case study in Kundah Taluk, Nilgiris District, India. Open Geosciences 17:20220757, doi:10.1515/geo-2022-0757.

Shu, H., Guo, Z., Qi, S., Song, D., Pourghasemi, H.R. and Ma, J. 2021. Integrating landslide typology with weighted frequency ratio model for landslide susceptibility mapping: A case study from Lanzhou city of northwestern China. Remote Sensing 13(18), doi:10.3390/rs13183623.

Sonker, I., Tripathi, J.N. and Maurya, S. 2022. Remote sensing and GIS-based landslide susceptibility mapping using frequency ratio method in Sikkim Himalaya. Quaternary Science Advances 8, October 2022: 100067, doi:10.1016/j.qsa.2022.100067.

Tang, R.X., Yan, E.C., Wen, T., Yin, X.M. and Tang, W. 2021. Comparison of logistic regression, information value, and comprehensive evaluating model for landslide susceptibility mapping. Sustainability (Switzerland) 13(7):3803, doi:10.3390/su13073803.

Tesfaye, B., Jothimani, M. and Dawit, Z. 2024. Mapping landslide susceptibility in the Debretabor-Alember road sector, Northwestern Ethiopia through geospatial tools and statistical approaches. Journal of Degraded and Mining Lands Management 11(2):5169-5179, doi:10.15243/jdmlm.2024.112.5169.

Wardhani, P.I., Musiyam, M., Wibowo, Y.A., Rahmadana, A.D.W., Utami, S. and Maulana, E. 2024. Evaluation of disaster safe education unit programme implementation in Mt. Merapi using the pressure state response approach. Jàmbá: Journal of Disaster Risk Studies 16(1):1-7, doi:10.4102/jamba.v16i1.1769.

Yang, I.T., Acharya, T.D. and Lee, D.H. 2016. Landslide susceptibility mapping for 2015 earthquake region of Sindhupalchowk, Nepal using frequency ratio. Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography 34(4):443-451, doi:10.7848/ksgpc.2016.34.4.443.

Yonas, O., Jothimani, M. and Regasa, H. 2024. Assessing landslide susceptibility in Lake Abya catchment, Rift Valley, Ethiopia: A GIS-based frequency ratio analysis. Journal of Degraded and Mining Lands Management 11(3):5885-5895, doi:10.15243/jdmlm.2024.113.5885.

Zhang, Q., He, Y., Zhang, L., Lu, J., Gao, B., Yang, W., Chen, H. and Zhang, Y. 2024. A landslide susceptibility assessment method considering the similarity of geographic environments based on a graph neural network.Gondwana Research 132(August 2024):323-342, doi:10.1016/j.gr.2024.04.013.

Zhou, M., Yuan, M., Yang, G. and Mei, G. 2024. Risk analysis of road networks under the influence of landslides by considering landslide susceptibility and road vulnerability: A case study. Natural Hazards Research 4(3), September 2024: 387-400, doi:10.1016/j.nhres.2023.09.013.

Downloads

Submitted

29-01-2025

Accepted

12-04-2025

Published

13-04-2025

How to Cite

Pertiwi, R., Sartohadi, J., Setiawan, M. A., & Maulana, E. (2025). Landslide susceptibility analysis on road sections in Kaligesing District, Indonesia, using Frequency Ratio (FR) approaches. Journal of Degraded and Mining Lands Management, 12(4), 7913–7922. https://doi.org/10.15243/jdmlm.2025.124.7913

Issue

Section

Research Article