Landscape design for gully erosion control on the upper slopes of Mount Sumbing, Central Java, Indonesia

Authors

DOI:

https://doi.org/10.15243/jdmlm.2025.122.7037

Keywords:

gully control, gully erosion , landscape design, tropical gully, tropical volcanic areas

Abstract

Gully erosion can cause significant soil loss; thus, it must be controlled. This study aimed to develop a landscape design for controlling gully erosion in a volcanic environment with a thin soil layer. The primary data used was Unmanned Aerial Vehicle (UAV) data combined with field surveys and in-depth interviews. A collaborative approach was used to develop the landscape design to minimize the impact of gully erosion. The finding showed that gully erosion had entered adult to old age since the scars (incisions) at the gully bottom existed. According to the community, gullies must be controlled, although they do not affect land productivity. Vegetative control is the most favored method of gully erosion control. Local vegetation with the potential for additional value is chosen to control gully erosion. Strengthening community capacity is the most favorable way to manage gullies. Through good understanding, local communities can control the development of gullies. Further strengthening of regulations related to gully erosion control will have a domino effect on land sustainability. This finding can be extrapolated globally to locations with similar land characteristics.

References

Ahmad, N.S.B.N, Mustafa, F.B., Yusoff, S.Y.M. and Didams, G. 2020. A systematic review of soil erosion control practices on the agricultural land in Asia. International Soil and Water Conservation Research 8(2):103-115. https://doi.org/10.1016/j.iswcr.2020.04.001

Arabameri, A., Pradhan, B. and Lombardo, L. 2019. Comparative assessment using boosted regression trees, binary logistic regression, frequency ratio and numerical risk factor for gully erosion susceptibility modelling. Catena 183:104223. https://doi.org/10.1016/j.catena.2019.104223

Bailey, R.G. 2014. Ecoregions: The ecosystem geography of the oceans and continents. 2nd Ed. Springer. https://doi.org/10.1007/978-1-4939-0524-9

Bean, T.A., Sumner, P.D., Boojhawon, R., Tatayah, V., Khadun, A.K., Hedding, D.W., Rughooputh, S. and Nel, W. 2017. Catena Bedrock-incised gully erosion phenomena on Round Island, Mauritius. Catena 151:107-117. https://doi.org/10.1016/j.catena.2016.12.001

Belayneh, M., Yirgu, T. and Tsegaye, D. 2020. Current extent, temporal trends, and rates of gully erosion in the Gumara watershed, Northwestern Ethiopia. Global Ecology and Conservation 24:e01255. https://doi.org/10.1016/j.gecco.2020.e01255

Cândido, B.M., Quinton, J.N., James, M.R., Silva, M.L.N., de Carvalho, T.S., de Lima, W., Beniaich, A. and Eltner, A. 2020. High-resolution monitoring of diffuse (sheet or interrill) erosion using structure-from-motion. Geoderma 375. https://doi.org/10.1016/j.geoderma.2020.114477

Conoscenti, C. and Rotigliano, E. 2020. Predicting gully occurrence at watershed scale: Comparing topographic indices and multivariate statistical models. Geomorphology 359:107123. https://doi.org/10.1016/j.geomorph.2020.107123

du Plessis, C., van Zijl, G., Van Tol, J. and Manyevere, A. 2020. Machine learning digital soil mapping to inform gully erosion mitigation measures in the Eastern Cape, South Africa. Geoderma 368:114287. https://doi.org/10.1016/j.geoderma.2020.114287

Du, X., Jian, J., Du, C. and Stewart, R.D. 2022. Conservation management decreases surface runoff and soil erosion. International Soil and Water Conservation Research 10(2):188-196. https://doi.org/10.1016/j.iswcr.2021.08.001

Eloudi, H., Reddad, H., Hssaisoune, M., Estrany, J., Krimissa, S., Elaloui, A., Namous, M., Ouatiki, H., Aboutaib, F., Ouayah, M., Jadoud, M., Edahbi, M. and Bouchaou, L. 2022. Assessing the performance of MCDM, statistical and machine learning ensemble models for gully sensitivity mapping in a semi-arid context. Geocarto International 37(27):17435-17464. https://doi.org/10.1080/10106049.2022.2129818

Hancock, G.R., Willgoose, G.R. and Lowry, J. 2014. Transient landscapes: Gully development and evolution using a landscape evolution model. Stochastic Environmental Research and Risk Assessment 28(1):83-98. https://doi.org/10.1007/s00477-013-0741-y

Helman, D. and Mussery, A. 2020. Using Landsat satellites to assess the impact of check dams built across erosive gullies on vegetation rehabilitation. Science of the Total Environment, 730:138873. https://doi.org/10.1016/j.scitotenv.2020.138873

Hosseinalizadeh, M., Alinejad, M., Behbahani, A.B., Khormali, F., Kariminejad, N. and Pourghasemi, H.R. 2020. A review on the gully erosion and land degradation in Iran. Advances in Science, Technology and Innovation 393-403. https://doi.org/10.1007/978-3-030-23243-6_26

Hurni, H. 1997. Concepts of sustainable land management. ITC Journal 1997(3-4):210-215.

Ionita, I., Fullen, M.A., Zg?obicki, W. and Poesen, J. 2015. Gully erosion as a natural and human-induced hazard. Natural Hazards 79(1):1-5. https://doi.org/10.1007/s11069-015-1935-z

Ireland, H.A., Sharpe, C.F. and Eargle, D.H. 1939. Principles of gully erosion in the Piedmont of South Carolina. USDA Technical Bulletin 633:1-143.

Karrasch, L., Maier, M., Klenke, T. and Kleyer, M. 2017. Collaborative landscape planning: Co-design of ecosystem-based land management scenarios. Sustainability (Switzerland), 9(9):1-15. https://doi.org/10.3390/su9091668

Lesschen, J.P., Kok, K., Verburg, P.H. and Cammeraat, L.H. 2007. Identification of vulnerable areas for gully erosion under different scenarios of land abandonment in Southeast Spain. Catena 71(1):1100121. https://doi.org/10.1016/j.catena.2006.05.014

Liu, J. and Liu, H. 2020. Soil erosion changes during the last 30?years and contributions of gully erosion to sediment yield in a small catchment, southern China. Geomorphology, 368:107357. https://doi.org/10.1016/j.geomorph.2020.107357

Mararakanye, N. and Sumner, P.D. 2017. Gully erosion: A comparison of contributing factors in two catchments in South Africa. Geomorphology 288:99-110. https://doi.org/10.1016/j.geomorph.2017.03.029

Mashi, S.A., Yaro, A. and Jenkwe, E.D. 2015. Causes and consequences of gully erosion: perspectives of the local people in Dangara area, Nigeria. Environment, Development and Sustainability 17(6):1431-1450. https://doi.org/10.1007/s10668-014-9614-x

Maulana, E., Sartohadi, J. and Setiawan, M.A. 2023a. AHP GIS-based gully erosion susceptibility modelling in tropical volcano environment. Journal of Hunan University Natural Sciences 50(2):191-201. https://doi.org/10.55463/issn.1674-2974.50.2.20

Maulana, E., Sartohadi, J. and Setiawan, M.A. 2023b. Soil conservation at the gully plot scale in the tropical volcanic landscape of Sumbing. AIM Environmental Science 10:832-846. https://doi.org/10.3934/environsci.2023045

Meinen, B.U. and Robinson, D.T. 2020. Mapping erosion and deposition in an agricultural landscape: Optimization of UAV image acquisition schemes for SfM-MVS. Remote Sensing of Environment 239:111666. https://doi.org/10.1016/j.rse.2020.111666

Noto, L.V., Bastola, S., Dialynas, Y.G., Arnone, E. and Bras, R.L. 2017. Integration of fuzzy logic and image analysis for the detection of gullies in the Calhoun Critical Zone Observatory using airborne LiDAR data. ISPRS Journal of Photogrammetry and Remote Sensing 126:209-224. https://doi.org/10.1016/j.isprsjprs.2017.02.013

Nugraha, S.S. and Sartohadi, J. 2018. Factors influencing the level of gully erosion density in the Kaliwungu River Basin. Jurnal Penelitian Pengelolaan Daerah Aliran Sungai 2(1):73-88, (in Indonesian). https://doi.org/10.20886/jppdas.2018.2.1.73-88

Peterson, R.B., Kapiyo, R.A., Campbell, E.M. and Nyabua, P.O. 2018. Gully rehabilitation trusts: Fighting soil erosion through community participation in western Kenya. Journal of Rural Studies 58:67-81. https://doi.org/10.1016/j.jrurstud.2017.12.028

Poesen, J., Vandekerckhove, L., Nachtergaele, J., Oostwoud Wijdenes, D., Verstraeten, G. and Van Wesemael, B. 2002. Gully erosion in dryland environments. In: Bull, L.J. and Kirkby, M.J. (eds.), Dryland Rivers: Hydrology and Geomorphology of Semi-arid Channels. Wiley & Sons, Chichester, England, pp. 229-262.

Pourghasemi, H.R., Yousefi, S., Kornejady, A. and Cerdà, A. 2017. Performance assessment of individual and ensemble data-mining techniques for gully erosion modeling. Science of the Total Environment 609:764-775. https://doi.org/10.1016/j.scitotenv.2017.07.198

Rahmati, O., Haghizadeh, A., Pourghasemi, H.R. and Noormohamadi, F. 2016. Gully erosion susceptibility mapping: the role of GIS-based bivariate statistical models and their comparison. Natural Hazards 82(2):1231-1258. https://doi.org/10.1007/s11069-016-2239-7

Rahmati, O., Kalantari, Z., Ferreira, C.S., Chen, W., Soleimanpour, S.M., Kapovi?-Solomun, M., Seifollahi-Aghmiuni, S., Ghajarnia, N. and Kazemabady, N.K. 2022. Contribution of physical and anthropogenic factors to gully erosion initiation. Catena 210. https://doi.org/10.1016/j.catena.2021.105925

Rahmati, O., Tahmasebipour, N., Haghizadeh, A., Pourghasemi, H.R. and Feizizadeh, B. 2017. Evaluating the influence of geo-environmental factors on gully erosion in a semi-arid region of Iran: An integrated framework. Science of the Total Environment 579:913-927. https://doi.org/10.1016/j.scitotenv.2016.10.176

Raji, S.A., Akintuyi, A.O., Wunude, E.O. and Fashoto, B. 2023. A machine learning-based spatial statistical method for modelling different phases of gully development in South-Eastern Nigeria. Ecological Informatics 75:102101. https://doi.org/10.1016/j.ecoinf.2023.102101

Roberts, M.E., Burrows, R.M., Thwaites, R.N. and Hamilton, D.P. 2022. Modelling classical gullies - A review. Geomorphology 407:108216. https://doi.org/10.1016/j.geomorph.2022.108216

Saha, S., Roy, J., Arabameri, A., Blaschke, T. and Bui, D.T.. 2020. Machine learning?based gully erosion susceptibility mapping: A case study of eastern India. Sensors (Switzerland) 20(5). https://doi.org/10.3390/s20051313

Sartohadi, J., Pulungan, N.A.H.J., Nurudin, M. and Wahyudi, W. 2018. The ecological perspective of landslides at soils with high clay content in the middle Bogowonto watershed, Central Java, Indonesia. Applied and Environmental Soil Science 2018. https://doi.org/10.1155/2018/2648185

Sun, L., Zhang, B., Yin, Z., Guo, H., Siddique, K.H.M., Wu, S. and Yang, J. 2022. Assessing the performance of conservation measures for controlling slope runoff and erosion using field scouring experiments. Agricultural Water Management 259(26):107212. https://doi.org/10.1016/j.agwat.2021.107212

Valentin, C., Poesen, J. and Li, Y. 2005. Gully erosion: impacts, factors and control. Catena 63:132-153. https://doi.org/10.1016/j.catena.2005.06.001

Vanmaercke, M., Panagos, P., Vanwalleghem, T., Hayas, A., Foerster, S., Borrelli, P., Rossi, M., Torri, D., Casali, J., Borselli, L., Vigiak, O., Maerker, M., Haregeweyn, N., De Geeter, S., Zg?obicki, W., Bielders, C., Cerda, A., Conoscenti, C., de Figueiredo, T., Evans, B. and Poesen, J. 2021. Measuring, modelling and managing gully erosion at large scales: A state of the art. Earth-Science Reviews 218, July 2021:103637. https://doi.org/10.1016/j.earscirev.2021.103637

Verstraeten, G., Poesen, J., de Vente, J. and Koninckx, X. 2003. Sediment yield variability in Spain: A quantitative and semiqualitative analysis using reservoir sedimentation rates. Geomorphology 50(4):327-348. https://doi.org/10.1016/S0169-555X(02)00220-9

Wang, R., Sun, H., Yang, J., Zhang, S., Fu, H., Wang, N. and Liu, Q. 2022. Quantitative evaluation of gully erosion using multitemporal UAV data in the southern black soil region of Northeast China: A case study. Remote Sensing 14(6). https://doi.org/10.3390/rs14061479

Wang, T., He, F., Zhang, A., Gu, L., Wen, Y., Jiang, W. and Shao, H. 2014. A quantitative study of gully erosion based on object-oriented analysis techniques: A case study in Beiyanzikou catchment of Qixia, Shandong, China. The Scientific World Journal 2014. https://doi.org/10.1155/2014/417325

Yazie, T., Mekonnen, M. and Derebe, A. 2021. Gully erosion and its impacts on soil loss and crop yield in three decades, northwest Ethiopia. Modeling Earth Systems and Environment, 7(4):2491-2500. https://doi.org/10.1007/s40808-020-01018-y

Yitbarek, T.W., Belliethathan, S. and Stringer, L.C. 2012. The onsite cost of gully erosion and cost-benefit of gully rehabilitation: A case study in Ethiopia. Land Degradation and Development 23(2):157-166. https://doi.org/10.1002/ldr.1065

Zhang, Q., Qin, W., Cao, W., Jiao, J., Yin, Z. and Xu, H. 2023. Response of erosion reduction effect of typical soil and water conservation measures in cropland to rainfall and slope gradient changes and their applicable range in the Chinese Mollisols Region, Northeast China. International Soil and Water Conservation Research 11(2):251-262. https://doi.org/10.1016/j.iswcr.2022.10.005

Downloads

Submitted

31-07-2024

Accepted

25-10-2024

Published

01-01-2025

How to Cite

Maulana, E., Sartohadi, J., & Setiawan, M. A. (2025). Landscape design for gully erosion control on the upper slopes of Mount Sumbing, Central Java, Indonesia . Journal of Degraded and Mining Lands Management, 12(2), 7037–7047. https://doi.org/10.15243/jdmlm.2025.122.7037

Issue

Section

Research Article