Mapping peat thickness and groundwater level using a portable electromagnetic instrument in Indragiri Hilir, Riau, Indonesia

Authors

  • Sigit Sutikno Center for Peatland and Disaster Studies (CPDS), University of Riau, Kampus Bina Widya Km 12.5 Pekanbaru 28293, Indonesia https://orcid.org/0000-0001-9948-0064
  • Muhamad Yusa Civil Engineering Department, University of Riau, Kampus Bina Widya Km 12.5 Pekanbaru 28293, Indonesia https://orcid.org/0000-0001-9748-6307
  • Andy Hendri Civil Engineering Department, University of Riau, Kampus Bina Widya Km 12.5 Pekanbaru 28293, Indonesia
  • Muhammad Kusairi Civil Engineering Department, University of Riau, Kampus Bina Widya Km 12.5 Pekanbaru 28293, Indonesia
  • Ahmad Muhammad Biology Department, University of Riau, Kampus Bina Widya Km 12. Pekanbaru 28293, Indonesia
  • Nurul Qomar Forestry Department, University of Riau, Kampus Bina Widya Km 12.5 Pekanbaru 28293, Indonesia

DOI:

https://doi.org/10.15243/jdmlm.2025.123.7431

Keywords:

electromagnetic, ground water level, handy instrument, peat thickness, resistivity

Abstract

Peatlands play a crucial role in the global carbon cycle, water regulation, biodiversity conservation, research, education, and recreation. Peat thickness and groundwater level (GWL) are key parameters for optimizing these peatland functions; therefore, mapping peat thickness and GWL quickly, accurately, and cost-effectively is essential. This study applied a geophysical survey using a portable electromagnetic instrument to estimate peat thickness and GWL. The instrument, which is simple to operate and wirelessly connected to a mobile phone, enables rapid measurement and visualization of subsurface resistivity. A research site in Indragiri Hilir Regency, Riau Province, Indonesia, was picked up as an experiment site to test the instrument. Three transects with measurement path lengths of 100 m each and a distance of about 1.4 km each were designed for the experiment. To validate the resistivity data against subsurface stratigraphy, core sampling was conducted at three points along each transect. The results demonstrated that the electromagnetic method effectively identified the interface between peat soil and the underlying marine clay. Analysis revealed that the resistivity values for unsaturated peat, saturated peat, and saturated clay were 68-81 ohm m, 75-96 ohm m, and 82-115 ohm m, respectively. These findings suggest that GWL mapping and peat stratigraphy characterization can be accurately achieved using this method.

References

Acosta, J.A., Gabarron, M., Martínez-Segura, M., Martinez-Martinez, S., Faz, A., Perez-Pastor, A., Gomez-Lopez, M.D. and Zornoza, R. 2022. Soil water content prediction using electrical resistivity tomography (ERT) in Mediterranean tree orchard soils. Sensors 22(4):1365. https://doi.org/10.3390/s22041365

Ahmad, S., Liu, H., Gunther, A., Couwenberg, J. and Lennartz, B. 2020. Long-term rewetting of degraded peatlands restores hydrological buffer function. Science of the Total Environment 749:141571. https://doi.org/10.1016/j.scitotenv.2020.141571

Aizebeokhai, A.P., Olayinka, A.I. and Singh, V.S. 2010. Application of 2D and 3D geoelectrical resistivity imaging for engineering site investigation in a crystalline basement terrain, southwestern Nigeria. Environmental Earth Sciences 61:1481-1492. https://doi.org/10.1007/s12665-010-0464-z

Asadi, A. and Huat, B.B.K. 2009. Electrical resistivity of tropical peat. Electronic Journal of Geotechnical Engineering 14:1-9.

Balliston, N.E. and Price, J.S. 2020. Heterogeneity of the peat profile and its role in unsaturated sodium chloride rise at field and laboratory scales. Vadose Zone Journal 19(1):e20015. https://doi.org/10.1002/vzj2.20015

Bansal, S., Creed, I.F., Tangen, B.A., Bridgham, S.D., Desai, A.R., Krauss, K.W., Neubauer, S.C., Noe, G.B., Rosenberry, D.O. and Trettin, C. 2023. Practical guide to measuring wetland carbon pools and fluxes. Wetlands 43(8):105. https://doi.org/10.1007/s13157-023-01722-2

Basri, K., Wahab, N., Talib, M.K.A. and Zainorabidin, A. 2019. Sub-surface profiling using electrical resistivity tomography (ERT) with complement from peat sampler. Civil Engineering and Architecture 7(6A):7-18. https://doi.org/10.13189/cea.2019.071402

Boggs, S. 2006. Principles of Sedimentology and Stratigraphy (Vol. 662). Pearson Prentice Hall Upper Saddle River, NJ.

Comas, X. and Slater, L. 2004. Low?frequency electrical properties of peat. Water Resources Research 40(12). https://doi.org/10.1029/2004WR003534

Comas, X., Slater, L. and Reeve, A. 2004. Geophysical evidence for peat basin morphology and stratigraphic controls on vegetation observed in a Northern Peatland. Journal of Hydrology 295(1-4):173-184. https://doi.org/10.1016/j.jhydrol.2004.03.008

Comas, X., Terry, N., Slater, L., Warren, M., Kolka, R., Kristiyono, A., Sudiana, N., Nurjaman, D. and Darusman, T. 2015. Imaging tropical peatlands in Indonesia using ground-penetrating radar (GPR) and electrical resistivity imaging (ERI): implications for carbon stock estimates and peat soil characterization. Biogeosciences 12(10):2995-3007. https://doi.org/10.5194/bg-12-2995-2015

Eze, U.S., Okiotor, M.E., Ighadalo, J.E., Owonaro, B.J., Saleh, A.S. and Jamiu, A.S. 2023. Application of 2-D and 3-D geo-electrical resistivity tomography and geotechnical soil evaluation for engineering site investigation: A case study of Okerenkoko Primary School, Warri-Southwest, Delta State, Nigeria. Advances in Geological and Geotechnical Engineering Research 5(2):1-23. https://doi.org/10.30564/agger.v5i2.5382

Holden, J., Green, S.M., Baird, A.J., Grayson, R.P., Dooling, G.P., Chapman, P.J., Evans, C.D., Peacock, M. and Swindles, G. 2017. The impact of ditch blocking on the hydrological functioning of blanket peatlands. Hydrological Processes 31(3):525-539. https://doi.org/10.1002/hyp.11031

Illes, G., Sutikno, S., Szatmari, G., Sandhyavitri, A., Pasztor, L. and Kristijono, A. 2019. Facing the peat CO2 threat?: digital mapping of Indonesian peatlands — a proposed methodology and its application. Journal of Soils and Sediments 1(1):12. https://doi.org/10.1007/s11368-019-02328-0

Islami, N., Irianti, M., Azhar, A., Nor, M. and Fakhruddin, F. 2023. Understanding the quality and potential of groundwater for human purposes and peat fire disaster mitigation. Arabian Journal of Geosciences 16(4):281. https://doi.org/10.1007/s12517-023-11357-6

Joosten, H. and Clarke, D. 2002. Wise Use of Mires and Peatlands - and Including Framework for Decision - Making. International Mire Conservation Group and International Peat Society.

Kowalczyk, S., Zukowska, K.A., Mendecki, M.J. and ?ukasiak, D. 2017. Application of Electrical Resistivity Imaging (ERI) for the assessment of peat properties: a case study of the Ca?owanie Fen, Central Poland. Acta Geophysica 65(1):223-235. https://doi.org/10.1007/s11600-017-0018-9

Parish, F., Sirin, A., Charman, D., Joosten, H., Minayeva, T., Silvius, M. and Stringer, L. 2008. Assessment on peatlands, biodiversity and climate change: Main report. Global Environment Centre, Kuala Lumpur and Wetlands International, Wageningen. https://doi.org/10.1017/CBO9781107415324.004

Parry, L.E., West, L.J., Holden, J. and Chapman, P.J. 2014. Evaluating approaches for estimating peat depth. Journal of Geophysical Research: Biogeosciences 119(4):567-576. https://doi.org/10.1002/2013JG002411

Pratama, H., Sutikno, S. and Yusa, M. 2020. Modeling of groundwater level fluctuation in the tropical peatland area of Riau, Indonesia. IOP Conference Series: Materials Science and Engineering 796(012037):1-8. https://doi.org/10.1088/1757-899X/796/1/012037

Ramdhani, M.R., Ruhimat, A., Wiyono, W. and Barnes, A. 2020. Imaging tropical peatland and aquifer potential in South Sumatera using electrical resistivity tomography. Indonesian Journal of Forestry Research 7(1):1-14. https://doi.org/10.20886/ijfr.2020.7.1.1-14

Rostami, H. and Osouli, A. 2022. Electrical resistivity changes in wet and dry side of optimum moisture content for soils with low to high fines content BT. In: Tutumluer, E., Nazarian, S., Al-Qadi, I. and Qamhia, I.I.A. (eds.), Advances in Transportation Geotechnics IV (pp. 829–836). Springer International Publishing. https://doi.org/10.1007/978-3-030-77234-5_68

Shotyk, W. and Noernberg, T. 2020. Sampling, handling, and preparation of peat cores from bogs: A review of recent progress and perspectives for trace element research. Canadian Journal of Soil Science 100(4):363-380. https://doi.org/10.1139/cjss-2019-0160

Slater, L.D. and Reeve, A. 2002. Investigating peatland stratigraphy and hydrogeology using integrated electrical geophysics. Geophysics 67(2):365-78. https://doi.org/10.1190/1.1468597

Su, J., Yang, C., Wu, W. and Huang, R. 2002. Effect of moisture content on concrete resistivity measurement. Journal of the Chinese Institute of Engineers 25(1):117-122. https://doi.org/10.1080/02533839.2002.9670686

Sutikno, S., Nasrul, B., Gunawan, H., Jayadi, R., Rinaldi, Saputra, E. and Yamamoto, K. 2019. The effectiveness of canal blocking for hydrological restoration in tropical peatland. MATEC Web of Conferences 276:0603, International Conference on Advances in Civil and Environmental Engineering (ICAnCEE 2018). https://doi.org/10.1051/matecconf/201927606003

Xu, J., Morris, P.J., Liu, J. and Holden, J. 2018. PEATMAP: Refining estimates of global peatland distribution based on a meta-analysis. Catena 160:134-140. https://doi.org/10.1016/j.catena.2017.09.010

Yusa, M., Sandyavitri, A. and Sutikno, S. 2019. Application of electrical resistivity test to estimate carbon storage of tropical peat deposit (Case study of Bengkalis Island). MATEC Web of Conferences 276:05004, International Conference on Advances in Civil and Environmental Engineering (ICAnCEE 2018). https://doi.org/10.1051/matecconf/201927605004

Yusa, M., Sutikno, S., Lita, D., Ari, S., Evelyn, Fadli, D. and Dian, P. 2019. Resistivity and physical characteristics of Meranti’s peat. Journal of Physics: Conference Series 1351(1), (URICSE-2019). https://doi.org/10.1088/1742-6596/1351/1/012052

Yusa, M., Yamamoto, K., Koyama, A., Sutikno, S., Fatnanta, F., Fauzi, M. and Nasrul, B. 2021. Geotechnical characterization of Bengkalis’ peat using portable tools. International Journal of GEOMATE 20(80):113-120. https://doi.org/10.21660/2021.80.j2034

Zakariah, M.N.A., Noh, K.A.M., Lee, S.C.H. and Idris, H.S. 2020. Integration of electrical resistivity imaging with borehole and hand auger data for peat characterisation: A case study at Kuala Langat, Selangor, Malaysia. Platform: A Journal of Science and Technology 3(2):23-31. https://doi.org/10.61762/pjstvol3iss2art10132

Downloads

Submitted

14-12-2024

Accepted

22-01-2025

Published

01-04-2025

How to Cite

Sutikno, S., Yusa, M., Andy Hendri, Kusairi, M., Ahmad Muhammad, & Nurul Qomar. (2025). Mapping peat thickness and groundwater level using a portable electromagnetic instrument in Indragiri Hilir, Riau, Indonesia. Journal of Degraded and Mining Lands Management, 12(3), 7431–7441. https://doi.org/10.15243/jdmlm.2025.123.7431

Issue

Section

Research Article