Degradation of diesel fuel by Pseudomonas aeruginosa B031 with expression of the alkB gene in a column bioreactor

Authors

  • Pieter Jhon Joshua Daris Biotechnology Study Program, Universitas Gadjah Mada, Jl. Teknika Selatan Sekip Utara, Sleman, Yogyakarta 55281, Indonesia
  • Wahyu Wilopo Department of Geological Engineering, Universitas Gadjah Mada, Jl. Grafika Bulaksumur, Sleman, Yogyakarta 55281, Indonesia https://orcid.org/0000-0001-6059-6318
  • Wayan Warmada Department of Geological Engineering, Universitas Gadjah Mada, Jl. Grafika Bulaksumur, Sleman, Yogyakarta 55281, Indonesia
  • Endah Retnaningrum Microbiology Laboratory, Faculty of Biology, Universitas Gadjah Mada, Jl. Teknika Selatan Sekip Utara, Sleman, Yogyakarta 55281, Indonesia https://orcid.org/0000-0001-7936-4920

DOI:

https://doi.org/10.15243/jdmlm.2024.121.6875

Keywords:

alkB gene, degradation efficiency, exopolysaccharide, FTIR, gene expression

Abstract

Diesel fuel pollutants contain toxic hydrocarbons dominated by aliphatic and aromatic hydrocarbons. Hydrocarbon pollutants can be degraded in an environmentally friendly manner through bioremediation using hydrocarbonoclastic bacteria, i.e., Pseudomonas aeruginosa B031, which harbors the alkB gene that encodes an alkane hydroxylase that degrades alkane chains in hydrocarbons. This study compared the ability and efficiency of P. aeruginosa B031 to degrade diesel pollutants in a batch system and a continuous system using a column bioreactor, as well as the expression of alkB. P. aeruginosa B031 could more efficiently degrade diesel fuel in a continuous system in a column bioreactor than in the batch system. The concentrations of phenol, total organic carbon, chemical oxygen demand, and biological oxygen demand in the column bioreactor underwent a greater decrease than those in the batch system, namely 1.5-fold, 1.7-fold, 1.4-fold, and 1.3-fold, respectively. The decrease in these concentrations was followed by changes in functional groups, as shown via Fourier transform infrared spectroscopy. The number of bacteria and the concentration of exopolysaccharide increased in the column bioreactor by 4-fold and 2.3-fold more than the increase in the batch system. The ability of P. aeruginosa B031 to degrade diesel fuel in the column bioreactor was also demonstrated by the higher expression of alkB than that in the control.

References

Ali, W.A.A. 2019. Biodegradation and phytotoxicity of crude oil hydrocarbons in an agricultural soil. Chilean Journal of Agricultural Research 79(2):266-277. https://doi.org/10.4067/S0718-58392019000200266

Al-Wasify, R.S. and Hamed, S.R. 2014. Bacterial biodegradation of crude oil using local isolates. International Journal of Bacteriology 1-8. https://doi.org/10.1155/2016/6013871

Balseiro-Romero, M., Monterroso, C., Kidd, P.S., Lu-Chau, T.A., Gkorezis, P., Vangronsveld, J. and Casares, J.J. 2019. Modelling the ex-situ bioremediation of diesel-contaminated soil in a slurry bioreactor using a hydrocarbon-degrading inoculant. Journal of Environmental Management 246:840-848. https://doi.org/10.1016/j.jenvman.2019.06.034

Basu, M. and Guha, A.K. 2023. Separation of lead from aqueous phase by cucumber peel in column bioreactor: A phenomenon of interaction between biological and chemical system and its ecological importance. Journal of Environmental Management 337:117738. https://doi.org/10.1016/j.jenvman.2023.117738

Benget, V.V. and Retnaningrum, E. 2020. Activities and molecular characterization of petroleum hydrocarbons degrading rhizobacteria from mangrove plants (Rhizophora sp.) in Kulon Progo, Yogyakarta, Indonesia. Biodiversitas Journal of Biological Diversity 21(1):21-27. https://doi.org/10.13057/biodiv/d210104

Bouteh, E., Ahmadi, N., Abbasi, M., Torabian, A., van Loosdrecht, M.C.M. and Ducoste, J. 2021. Biodegradation of organophosphorus pesticides in moving bed biofilm reactors: analysis of microbial community and biodegradation pathways. Journal of Hazardous Materials 408:124950. https://doi.org/10.1016/j.jhazmat.2020.124950

Catania, V., Lopresti, F., Cappello, S., Sca, R. and Quatrini, P. 2020. Innovative, ecofriendly biosorbent-biodegrading biofilms for bioremediation of oil-contaminated water. New Biotechnology 58:25-31. https://doi.org/10.1016/j.nbt.2020.04.001

Celik, G.Y., Aslim, B. and Beyatli, Y. 2008. Characterization and production of the exopolysaccharide (EPS) from Pseudomonas aeruginosa G1 and Pseudomonas putida G12 strains. Carbohydrate Polymers 73(1):178-182. https://doi.org/10.1016/j.carbpol.2007.11.021

Chanif, I., Hambali, E. and Yani, M. 2017. Performance of oil spill dispersant in the bioremediation process of oil-contaminated soil (case study of oil-contaminated soil in XYZ field). Jurnal Teknologi Industri Pertanian 27(3):336 (in Indonesian). https://doi.org/10.24961/j.tek.ind.pert.2017.27.3.336

Chen, W., Kong, Y., Li, J., Sun, Y., Min, J. and Hu, X. 2020. Enhanced biodegradation of crude oil by constructed bacterial consortium comprising salt-tolerant petroleum degraders and biosurfactant producers. International Biodeterioration and Biodegradation 154. https://doi.org/10.1016/j.ibiod.2020.105047

Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A. and Smith, F. 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry 28(3):350-356. https://doi.org/10.1021/ac60111a017

El-Borai, A.M., Eltayeb, K.M., Mostafa, A.R. and El-Assar, S.A. 2016. Biodegradation of industrial oil-polluted wastewater in Egypt by bacterial consortium immobilized in different types of carriers. Polish Journal of Environmental Studies 25(5):1901-1909. https://doi.org/10.15244/pjoes/62301

Frangipani, E., Slaveykova, V.I., Reimmann, C. and Haas, D. 2008. Adaptation of aerobically growing Pseudomonas aeruginosa to copper starvation. Journal of Bacteriology 190(20):6706-6717. https://doi.org/10.1128/JB.00450-08

Ganesan, M., Mani, R., Sai, S., Kasivelu, G., Awasthi, M.K., Rajagopal, R., Azelee, N.I.W., Selvi, P.K., Chang, S.W. and Ravindran, B. 2022. Bioremediation by oil-degrading marine bacteria: An overview of supplements and pathways in key processes. Chemosphere 303:134956. https://doi.org/10.1016/j.chemosphere.2022.134956

Gonçalves, C.R. and da Silva Delabona, P. 2022. Strategies for bioremediation of pesticides: challenges and perspectives of the Brazilian scenario for global application- A review. Environmental Advances 8:1-10. https://doi.org/10.1016/j.envadv.2022.100220

Hashim, S.A., Samsudin, F.N. bin. S., Wong, C. S., Bakar, K.A., Yap, S. L. and Zin, M.F.M. 2016. Non-thermal plasma for air and water remediation. Archives of Biochemistry and Biophysics 605:34-40. https://doi.org/10.1016/j.abb.2016.03.032

Hossain, M.F., Akter, M.A. Sohan, M.S.R., Sultana, D.N., Reza, M.A. and Hoque, K.M.F. 2022. Bioremediation potential of hydrocarbon degrading bacteria: isolation, characterization, and assessment. Saudi Journal of Biological Sciences 29(1):211-216. https://doi.org/10.1016/j.sjbs.2021.08.069

Husain, D.A. and Aziz, Z.S. 2022. Short Communication: Molecular study of bacteria isolated from meat and chicken frozen from Misan Governorate market in Iraq. Biodiversitas 23(1):81-86. https://doi.org/10.13057/biodiv/d230111

Kadri, T., Robert, T., Rouissi, T., Sebastian, J., Magdouli, S., Brar, S.K., Martel, R. and Lauzon, J.M. 2021. Column tests for evaluation of the enzymatic biodegradation capacity of hydrocarbons (C10-C50) contaminated soil. Environmental Pollution 290:1-7. https://doi.org/10.1016/j.envpol.2021.117986

Kumar, L., Chugh, M., Kumar, S., Kumar, K., Sharma, J. and Bharadvaja, N. 2022. Remediation of petrorefinery wastewater contaminants: A review on physicochemical and bioremediation strategies. Process Safety and Environmental Protection 159:362-375. https://doi.org/10.1016/j.psep.2022.01.009

Kuppusamy, S., Thavamani, P., Megharaj, M., Lee, Y.B. and Naidu, R. 2016. Isolation and characterization of polycyclic aromatic hydrocarbons (PAHs) degrading, pH tolerant, N-fixing and P-solubilizing novel bacteria from manufactured gas plant (MGP) site soils. Environmental Technology and Innovation 6:204-219. https://doi.org/10.1016/j.eti.2016.04.006

Li, H., Meng, F., Duan, W., Lin, Y. and Zheng, Y. 2019. Biodegradation of phenol in saline or hypersaline environments by bacteria: A review. Ecotoxicology and Environmental Safety 184:1-12. https://doi.org/10.1016/j.ecoenv.2019.109658

Li, Y., Shi, X., Ling, Q., Li, S., Wei, J., Xin, M., Xie, D., Chen, X., Liu, K. and Yu, F. 2022. Bacterial extracellular polymeric substances: impact on soil microbial community composition and their potential role in heavy metal contaminated soil. Ecotoxicology and Environmental Safety 240:11370. https://doi.org/10.1016/j.ecoenv.2022.113701

Liu, X. and Zhang, X. 2019. Solvent screening and liquid-liquid measurement for extraction of phenols from aromatic hydrocarbon mixtures. The Journal of Chemical Thermodynamics 129:12-21. https://doi.org/10.1016/j.jct.2018.09.006

Mahto, K.U. and Das, S. 2020. Whole genome characterization and phenanthrene catabolic pathway of a biofilm forming marine bacterium Pseudomonas aeruginosa PFL-P1. Ecotoxicology and Environmental Safety 206:111087. https://doi.org/10.1016/j.ecoenv.2020.111087

Meng, L., Li, W., Bao, M. and Peiyan, S. 2019. Effect of surfactants on the solubilization, sorption and biodegradation of benzo (a) pyrene by Pseudomonas aeruginosa BT-1. Journal of the Taiwan Institute of Chemical Engineers 96:121-130. https://doi.org/10.1016/j.jtice.2019.01.007

Meng, L., Li, W., Bao, M. and Sun, P. 2018. Promoting the treatment of crude oil alkane pollution through the study of enzyme activity. International Journal of Biological Macromolecules 119:708-716. https://doi.org/10.1016/j.ijbiomac.2018.07.160

Muthukumar, B., Al Salhi, M.S., Narenkumar, J., Devanesan, S., Rao, T.N., Kim, W. and Rajasekar, A. 2022. Characterization of two novel strains of Pseudomonas aeruginosa on biodegradation of crude oil and its enzyme activities. Environmental Pollution 304:1-8. https://doi.org/10.1016/j.envpol.2022.119223

Onbasli, D. and Aslim, B. 2009. Effects of some organic pollutants on the exopolysaccharides (EPSs) produced by some Pseudomonas spp. strains. Journal of Hazardous Materials 168(1):64-67. https://doi.org/10.1016/j.jhazmat.2009.01.131

Panigrahy, N., Priyadarshini, A., Sahoo, M.M., Verma, A.K., Daverey, A. and Sahoo, N.K. 2022. A comprehensive review on eco-toxicity and biodegradation of phenolics: Recent progress and future outlook. Environmental Technology and Innovation 27:1-32. https://doi.org/10.1016/j.eti.2022.102423

Pathak, M., Sarma, H.K., Bhattacharyya, K.G., Subudhi, S., Bisht, V., Lal, B. and Devi, A. 2017. Characterization of novel polymeric bioflocculant produced from bacterial utilization of n-hexadecane and its application in removal of heavy metals. Frontiers in Microbiology 8. https://doi.org/10.3389/fmicb.2017.00170

Premnath, N., Mohanrasu, K., Rao, R.G.R., Dinesh, G.H., Prakash., G.S., Pugazhendhi, A., Jeyakanthan, J., Govarthanan, M., Kumar, P. and Arun A. 2021. Effect of C/N substrates for enhanced extracellular polymeric substances (EPS) production and Poly Cyclic Aromatic Hydrocarbons (PAHs) degradation. Environmental Pollution 275. https://doi.org/10.1016/j.envpol.2020.116035

Puspoayu, E.S., Hakim, A.R. and Selsiana, H. 2019. Legal review of responsibility for oil pollution in the Balikpapan Bay area. Jurnal Hukum Ius Quia Iustum 25(3):560-580. https://doi.org/10.20885/iustum.vol25.iss3.art7

Rehman, K., Arslan, M., Müller, J.A., Saeed, M., Imran, A., Amin, I., Mustafa, T., Iqbal, S. and Afzal, M. 2021. Bioaugmentation-enhanced remediation of crude oil polluted water in pilot-scale floating treatment wetlands. Water 13:1-14. https://doi.org/10.3390/w13202882

Retnaningrum, E. and Wilopo, W. 2016. Performance and bacterial composition of anodic biofilms in microbial fuel cell using dairy wastewater. AIP Conference Proceedings 1744:020018. https://doi.org/10.1063/1.4953492

Retnaningrum, E. and Wilopo, W. 2018. Production and characterization of biosurfactants produced by Pseudomonas aeruginosa B031 isolated from a hydrocarbon phytoremediation field. Biotropia 25(2):130-139. https://doi.org/10.11598/btb.2018.25.2.808

Roussel, C., Ebel, B., Munier, E., Michelon, D., Martin-Dejardin, F., Beuvier, E., De Coninck, J., Gaudu, P. and Cachon, R. 2022. Green strategies to control redox potential in the fermented food industry. Food Research International 156. https://doi.org/10.1016/j.foodres.2022.111154

Sari, AM. and Retnaningrum, E. 2019. Hydrocarbon degradation by bacteria from rhizospheres of Imperata cylindrica at oil mining site in Wonocolo, Bojonegoro, Indonesia. Biodiversitas Journal of Biological Diversity 20(11):3422-3429. https://doi.org/10.13057/biodiv/d201140

Shapiro, T.N., Manucharova, N.A. and Lobakova, E.S. 2022. Activity of alkanmonooxygenase alkB gene in strains of hydrocarbon-oxidizing bacteria isolated from petroleum products. Vavilov Journal of Genetics and Breeding 26(6):575-582. https://doi.org/10.18699/VJGB-22-70

Shiu, R.F., Chiu, M.H., Vazquez, C.I., Tsai, Y-Y., Le, A., Kagiri, A., Xu, C., Kamalanathan, M., Bacosa, H.P., Doyle, S.M., Sylvan, J.B., Santschi, P.H., Quigg, A. and Chin, W-C. 2020. Protein to carbohydrate (P/C) ratio changes in microbial extracellular polymeric substances induced by oil and Corexit. Marine Chemistry 223:103789. https://doi.org/10.1016/j.marchem.2020.103789

Tamnou, E.B.M., Arfao, A.T., Nougang, M.E., Metsopkeng, C.S., Ewoti, O.V.N., Moungang, L.M., Nana, P.A., Takang-Etta, L.R.A., Perrière, F., Sime-Ngando, T. and Nola, M. 2021. Biodegradation of polyethylene by the bacterium Pseudomonas aeruginosa in acidic aquatic microcosm and effect of the environmental temperature. Environmental Challenges 3:1-8. https://doi.org/10.1016/j.envc.2021.100056

Ugochukwu, U.C., Okonkwo, F., Sokari, W., Eneh, C. and Ezogu, L. 2021. Bioremediation strategy based on risk assessment of exposure to residual polycyclic aromatic hydrocarbons. Journal of Environmental Management 280:1-9. https://doi.org/10.1016/j.jenvman.2020.111650

Walkley, A. and Black, I.A. 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science 37(1):29-38. https://doi.org/10.1097/00010694-193401000-00003

Wang, H., Huang, H., Bi, W., Ji, G., Zhou, B. and Zhuo, L. 2022. Deep and ultra-deep oil and gas well drilling technologies: Progress and prospect. Natural Gas Industry B 9(2):141-157. https://doi.org/10.1016/j.ngib.2021.08.019

Wang, Y., Song, J., Zhao, W., He, X., Chen, J. and Xiao, M. 2011. In situ degradation of phenol and promotion of plant growth in contaminated environments by a single Pseudomonas aeruginosa strain. Journal of Hazardous Materials 192(1):354-360. https://doi.org/10.1016/j.jhazmat.2011.05.031

Wu, M. and Li, X. 2014. Klebsiella pneumoniae and Pseudomonas aeruginosa. Molecular Medical Microbiology 87:1547-1564. https://doi.org/10.1016/B978-0-12-397169-2.00087-1

Zahraeifard, V. and Deng, Z. 2011. Hydraulic residence time computation for constructed wetland design. Ecological Engineering 37(12):2087-2091. https://doi.org/10.1016/j.ecoleng.2011.08.011

Zhang, Z., Guo, H., Sun, J., Gong, X., Wang, C. and Wang, H. 2021. Exploration of the biotransformation processes in the biodegradation of phenanthrene by a facultative anaerobe, strain PheF2, with Fe(III) or O2 as an electron acceptor. Science of The Total Environment 750:142245. https://doi.org/10.1016/j.scitotenv.2020.142245

Downloads

Submitted

22-07-2024

Accepted

08-09-2024

Published

01-10-2024

How to Cite

Daris, P. J. J., Wilopo, W., Warmada, W., & Retnaningrum, E. (2024). Degradation of diesel fuel by Pseudomonas aeruginosa B031 with expression of the alkB gene in a column bioreactor . Journal of Degraded and Mining Lands Management, 12(1), 6875–6885. https://doi.org/10.15243/jdmlm.2024.121.6875

Issue

Section

Research Article

Most read articles by the same author(s)

1 2 > >>