Indexed By
SJR Rank

SCImago Journal & Country Rank

Article Tools
Email this article (Login required)
Email the author (Login required)
About The Authors

Yulia Amirul Fata
Forest Management Science, Graduate Study Program, IPB University, Bogor, 16680

Forest Management

Hendrayanto Hendrayanto
Forest Management Department, IPB University, Bogor, 16680

Forest Management

Nur Febrianti
Remote Sensing Application Center, Indonesian National Institute of Aeronautics and Space, Jakarta, 13710

Remote Sensing Application Center

Author Guidelines

Visitor Statistic

Landslide frequency and its relationship with urban development in landform above groundwater basin area of Bogor, Indonesia

Yulia Amirul Fata, Hendrayanto Hendrayanto, Nur Febrianti
  J. Degrade. Min. Land Manage. , pp. 3561-3572  
Viewed : 108 times


The presence of groundwater in the groundwater basin increases the potential of rainwater seeping into the soil and reaching the groundwater system. As a result, the soil takes longer to get saturation and maintain its stability. The groundwater basin stability is also influenced by the layer's lithological, soil, and morphological properties above the groundwater system and human activities on the land. The purpose of this study was to characterize the groundwater basins, non-groundwater basins, and landslides that happened in those locations in the tropical region of Bogor, Indonesia. The characteristics of landslide events, including lithological, groundwater table, soil, slope, and land use in each groundwater basin zone, were evaluated using quantitative descriptive analysis. The result showed 686 landslides from 2015 to 2019 that mainly occurred in the discharge zone, characterized by slope classes of >45%, soil types of Technosol (Inceptisols), Quaternary lithology periods, and settlement land use. The landslide type in the groundwater basin is dominated by surface landslides, while the landslides in the non-groundwater basin are mostly shallow landslide types.


discharge; groundwater basin; landslide; non-groundwater basin; recharge; urban development

Full Text:



Alsubal, S., Sapari, N.B., Harahap, I.S.H. and Al-Bared, M.A.M. 2019. A review on mechanism of rainwater in triggering landslide. IOP Conference Series: Materials Science and Engineering 513:1-10, doi:10.1088/1757-899X/513/1/012009.

BMKG (Meteorology Climatology and Geophysics Agency (Badan Meteorologi, Klimatologi, dan Geofisika)). 2020. Daily rain data [Internet]. [downloaded on January 20, 2020].

BNPB, National Disaster Management Agency (Badan Nasional Penanggulangan Bencana). 2019. National disaster data [Internet]. [downloaded on 14 February 2019]. (in Indonesian).

Denchik, N., Gautier, S., Dupuy, M., Batiot-Guilhe, C., Lopez, M., Leonardi, V., Geeraert, M., Henry, G., Neyens, D., Coudray, P. and Pezard, P.A. 2019. In-situ geophysical and hydro-geochemical monitoring to infer landslide dynamics (Pégairolles-de-l'Escalette landslide, France). Engineering Geology 254:102-11, doi:10.1016/j.enggeo.2019.04.009.

Doi, I., Kamai, T., Azuma, R. and Wang, G. 2019. A landslide induced by the 2016 Kumamoto Earthquake adjacent to tectonic displacement-generation mechanism and long-term monitoring. Engineering Geology 248:80-88, doi:10.1016/j.enggeo.2018.11.012.

FAO (Food and Agriculture Organization of the United Nations). 2015. World Reference Base for Soil Resource 2014. FAO publications. Rome, IT.

Fata, Y.A., Hendrayanto, and Murtilaksono, K. 2020. Investigation of Landslides in Groundwater Basin of Bogor, West Java Province, Indonesia. Proceeding of 1st International Conference on Geography, Environment and Sustainability 2020, 6.

Froude, M.J. and Petley, D.N. 2018. Global fatal landslide occurrence from 2004 to 2016. Natural. Hazards and Earth System Sciences 18:2161-2181, doi:10.5194/nhess-18-2161-2018.

Hao, S., Li F., Li Y., Gu C., Zhang Q., Qiao Y., Jiao L. and Zhu, N. 2019. Stable isotope evidence for identifying the recharge mechanisms of precipitation, surface water, and groundwater in the Ebinur Lake basin. Science of the Total Environment 657:1041-1050, doi:10.1016/j.scitotenv.2018.12.102.

Hemasinghe, H., Rangali R.S.S., Deshapriya N.L. and Samarakoon, L. 2018. Landslide susceptibility mapping using logistic regression model (a case study in Badulla District, Sri Lanka). Procedia Engineering 212:1046-1053, doi:10.1016/j.proeng.2018.01.135.

Hidayat, S., Pachri, H. and Alimuddin, I. 2019. Analysis of Landslide Susceptibility Zone using Frequency Ratio and Logistic Regression Method in Hambalang, Citeureup District, Bogor Regency, West Java Province. IOP Conf. Series: Earth and Environmental Science 280:012005, doi:10.1088/1755-1315/280/1/012005.

Hutagalung, M. and Tarigan, S.D. 2019. Analysis of the potential for liquefaction due to the earthquake (case study: reclamation of the container port of Belawan phase-2]. Jurnal Rekayasa Konstruksi Mekanika Sipil 2(1):15-33, doi:10.54367/jrkms.v2i1.433 (in Indonesian).

Jacobs, L., Dewitte, O., Poesen, J., Maes, J., Mertens, K., Sekajugo, J. and Kervyn, M. 2016. Landslide characteristics and spatial distribution in the Rwenzori Mountains, Uganda. Journal of African Earth Sciences 134:917-930, doi:10.1007/978-3-319-53498-5_10.

Kim, J., Lee, K., Jeong, S. and Kim, G. 2014. GIS-based prediction method of landslide susceptibility using a rainfall infiltration-groundwater flow model. Engineering Geology 182(2014):63-78, doi:10.1016/j.enggeo.2014.09.001.

Kodoatie, R.J. 2012. Groundwater Spatial Planning. Andi Yogyakarta. Yogyakarta, ID. 225-274p (in Indonesian).

Ling, C., Xu, Q., Zhang, Q., Ran, J. and Lv, H. 2016. Application of electrical resistivity tomography for investigating the internal structure of a translational landslide and characterizing its groundwater circulation (Kualiangzi landslide, Southwest China). Journal of Applied Geophysics 131:154-162, doi:10.1016/j.jappgeo.2016.06.003.

Ling, S. and Chigira, M. 2020. Characteristics and triggers of earthquake-induced landslides of pyroclastic fall deposits: An example from Hachinohe during the 1968 M7.9 Tokachi-Oki earthquake, Japan. Engineering Geology 264:1-23, doi:10.1016/j.enggeo.2019.105301.

Marin, R.J. and Velasquez, M.F. 2019. Influence of hydraulic properties on physically modelling slope stability and the definition of rainfall thresholds for shallow landslides. Geomorphology 351:106976, doi:10.1016/j.geomorph.2019.106976.

Marui, H. and Wanfg, C. 2015. Earthquake-induced landslides: An overview. Engineering geology for society and territory 2:713-715, doi:10.1007/978-3-319-09057-3_119.

Pourghasemi, H.R. and Rossi M. 2017. Landslide susceptibility modeling in a landslide-prone area in Mazandarn Province, north of Iran: a comparison between GLM, GAM, MARS, and M-AHP methods. Theoretical and Applied Climatology 130(1-2):609-633, doi:10.1007/s00704-016-1919-2.

Pourghasemi, H.R., Kariminejad, N., Gayen, A. and Komac, M. 2019a. Statistical functions used for spatial modeling due to assessment of landslide distribution and landscape-interaction factors in Iran. Geoscience Frontiers 11(4):1257-1269, doi:10.1016/j.gsf.2019.11.005.

Pourghasemi, H.R., Kornejady, A., Kerle, N. and Shabani, F. 2019b. Investigating the effects of different landslide positioning techniques, landslide partitioning approaches, and presence-absence balances on landslide susceptibility mapping. Catena 187:1-15, doi:10.1016/j.catena.2019.104364.

Rahmati, O., Golkarin, A., Biggs, T., Keesstra, S., Mohammadi, F. and Daliakopoulos, I.N. 2019. Land subsidence hazard modeling: Machine learning to identify predictors and the role of human activities. Journal of Environmental Management 236:466-480, doi:10.1016/j.jenvman.2019.02.020.

Segoni, A., Piciullo, L. and Gariano, S.L. 2018. A review of the recent literature on rainfall thresholds for landslide occurrence. Landslides 15(8):1483-1501, doi:10.1007/s10346-018-0966-4.

Silalahi, F.E.S., Pamela, Arifianti, Y. and Hidayat F. 2019. Landslide susceptibility assessment using frequency ratio model in Bogor, West Java, Indonesia. Geoscience Letters 6(10):1-17, doi:10.1186/s40562-019-0140-4.

Temesgen, B., Mohammed, M.U. and Korme, T. 2001. Natural hazard assessment using GIS and remote sensing methods, with particular reference to the landslides in the Wondogenet Area, Ethiopia. Physics and Chemistry of the Earth (C). 26(9):665-615, doi:10.1016/S1464-1917(01)00065-4.

USGS (United States Geological Survey). 2020. Earthquake data [Internet]. [downloaded on January 20, 2020].

Wu, Y. 2003. Mechanism analysis of hazards caused by the interaction between groundwater and geo-environment. Environmental Geology 44:811-819, doi:10.1007/s00254-003-0819-9.

Zhang, M. and Liu, J. 2009. Controlling factors of loess landslides in western China. Environmental Earth Sciences 59:1671-1680, doi:10.1007/s12665-009-0149-7.


  • There are currently no refbacks.

Copyright (c) 2022 Journal of Degraded and Mining Lands Management

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Indexed By