Effect of litter mixture on litter decomposition and nutrient release of three agroforestry species in Sudano-Guinean savannah of Ngadoundere, Adamawa Cameroon


  • Massai Tchima Jacob Laboratory of Biodiversity and Sustainable Development, Department of Biological Sciences, Faculty of Science, The University of Ngaoundere
  • Babe Ndara Gregoire Laboratory of Biodiversity and Sustainable Development, Department of Biological Sciences, Faculty of Science, The University of Ngaoundere
  • Maigari Pale Laboratory of Biodiversity and Sustainable Development, Department of Biological Sciences, Faculty of Science, The University of Ngaoundere
  • Djouka Nembot Pélagie Institute of agriculture research and development, Garoua station
  • Ibrahima Adamou Laboratory of Biodiversity and Sustainable Development, Department of Biological Sciences, Faculty of Science, The University of Ngaoundere




biodiversity, litter decomposition, litter mixtures, nutrients release, savannas


In order to maintain or improve the soil fertility of agricultural systems in Ngaoundere, an experiment on the decomposition of simple litters and mixtures of Harungana madagascariens, Vitelaria paradoxa and Syzygium guineense var. macrocarpum was conducted in a field using the litterbag method. This experiment was made of single species and their mixtures of which gave three uneven mixtures (5VP, 5HM and 5SM) and one even mixture (3E) amounting to seven treatments (THM, TVP, TSM, 3E, 5HM, 5VP, and 5SM). The experimental design was a completely randomized block with three replications. 126 samples of 10 g each were introduced in a field for 24 weeks and a deduction of 3 samples was made at 2, 4, 6, 10, 16 and 24 weeks. The remaining dry mass, rates of decomposition, half time and the nutrient release in the soil were determined. The results showed that the remaining dry mass varied from 67.95% in TSM (S. guineense) to 22.02% in TVP (V. paradoxa). The rate of decomposition ranged from 0.033 for 5SM (mixture 50% of S. guineense and 25% for each of the two other species) to 0.055 in 3E with respectively 19, 64 to 12, 56 as a half-time. The initial chemical content and that at the end of the experiment of the simple and mixed litters varied significantly within the treatments. The mixture of litter released more nitrogen and carbon than the individual litter and the pattern was ranged as follow 3E>5VP>5HM>5SM>TVP>THM>TSM. The pattern of phosphorus release in the soil was ranged in the following order: TVP>TSM>THM>5VP>3E>5HM>5SM, indicating that the individual litter released more phosphorus on the soil than their mixture. These preliminary results will not only contribute in the comprehension of the decomposition process mechanism of Ngaoundere but also will permit in choosing the type of the litter and mixture with release more nutrient in the soil for improvement of agricultural system fertility.

Author Biography

Massai Tchima Jacob, Laboratory of Biodiversity and Sustainable Development, Department of Biological Sciences, Faculty of Science, The University of Ngaoundere

Institute of agriculture research and development, Wakwa regional research center


AFNOR (Association Française De Normalisation), 1982. Recueil des normes françaises des produits dérivés des fruits et légumes. Jus de fruits. 1ére édition. Paris (France). 327 p.

Baye-Niwah, C., 2001. Production des litières et rapport au sol d’éléments biogènes par la litière foliaire de quelques fruitiers sauvages des savanes de Ngaoundéré. Mémoire de Maitrise. L’université de Ngaoundéré Cameroun. 44p.

Begon, M., Harper, J.L. and Townsend, C.R. 2005. An Introduction to the Ecological Relations between Organisms and their Environments at the Ecosystem and Community Levels of Organization. Topics Include Primary Production and Decomposition, Migration and Dispersal Across Landscapes, and Food Webs. Blackwell Publishers: Oxford, UK; 1068 p.

Berg, B. and McClaugherty C., 2003. Plant Litter: Decomposition, Humus Formation, Carbon Sequestration. Springer-Verlag, p. 278 11.

Berg, B. and McClaugherty, C. 2008. Plant litter decomposition, humus formation, carbon sequestration. Springer-Verlag Berlin Heidelberg. ISBN: 978-3-540-74922-6. Library of Congress Control Number: 2007936554 © 2008.417p.

Bockheim, J.G., Jepsem, E.A. and Heisey, D.M. 1991. Nutrient dynamics in decomposing leaf litter of four tree species on a sandy soil in Northwestern Wisconsin. Canadian Journal of Forestry Research 21: 803-812.

Bocock, K.L., Gilbert, O., Capstick, C.K., Twinn, D.C., Waid, J.S. and Woodman, M.J. 1960. Changes in leaf litters when placed on the surface of soils with contraction humus types. 1. Losses in dry weight of oak and as leaf litter. European Journal of Soil Science 11(1): 1-9.

Bossa, J., Adams, J., Shannon, D. and Mullins, G. 2005. Phosphorus and potassium release pattern from Leucaena leaves in three environments of Haiti. Nutrients Cycling in Agroecosystems 73: 25-35.

Chapman, S.K. and Koch, G.W. 2007. What type of diversity yields synergy during mixed litter decomposition in a natural forest ecosystem. Plant and Soil 299: 153-162.

Chapman, S.K., Newman, G.S., Hart, S.C., Schweitzer, J.A. and Koch, G.W. 2013. Leaf litter mixtures alter microbial community development: mechanisms for non-additive effects in litter decomposition. PLoS ONE 8 (4), e62671, doi: 10.1371/ journal.pone.0062671.

Collin, A. 1985. Flash géographique. Le Cameroun. Editions clé. Yaoundé. 118 p.

Coûteaux, M., Bottner, P. and Berg, B. 1995. Litter decomposition, climate and litter quality. Trends in Ecology & Evolution 10(2): 63-66.

Dijkstra, F.A., West, J.B., Hobbie, S.E. and Reich, P.B., 2009. Antagonistic effects of species on C respiration and net N mineralization in soils from mixed coniferous plantations. Forest Ecology and Management 257: 1112–1118.

Goering, H.K. and Van Soest, P.J. 1970. Agriculture Handbook No. 379. Forage Fiber Analysis: Apparatus, Reagents, Procedures, and Some Applications. ARS-USDA, Washing-ton, DC.

Gonzalez, G. and Seastedt, T.R. 2001. Soil fauna and plant litter decomposition in tropical and subalpine forests. Ecology 82: 955‑964.

Hättenschwiler, S. and Gasser P. 2005. Soil animals alter plant litter diversity effects on decomposition. Proceedings of the National Academy of Sciences of the Uited States of America 102(5): 1519-1524.

Heneghan, L., Coleman, D., Zou, X., Crossley Jr, D. and Haines, B. 1998. community structure and litter decomposition dynamics: A study of tropical and temperate sites. Applied Soil Ecology 9: 33‑38.

Hoorens, B., Coomes, D., and Aerts, R. 2010. Neighbour identity hardly affects litter-mixture effects on decomposition rates of New Zealand forest species. Oecologia 162 : 479–489.

Ibrahima, A., Mapongmetsem, P.M., Nguetnkam, J.P. and Longmou, J, 2000. Décomposition des litières de quelques essences agroforestières en zone des savanes de l’Adamaoua, Cameroun. Biosciences Proceedings 7: 387-395.

Ibrahima, A., Schmidt, P., Ketner, P. and Mohren, G.J.M. 2002. Phytomasse et cycle des nutriments dans la forêt tropicale dense humide du sud Cameroun. Tropenbos - Cameroon Docum.nts 9, 150 p.

Ibrahima, A. 1995. Approches expérimentale et spectroscopique de la décomposition de litières méditerranéennes. Doctorat de l’Université de Montpellier II, Montpellier, France, 185p.

Ibrahima, A., Biyanzi, P. and Halima M. 2008. Changes in organic compounds during leaf litter leaching: laboratory experiment on eight plant species of the Sudano-guinea Savannas of Ngaoundere, Cameroon. Biogeosciences and Forestry 1(1): 27-33.

Ibrahima, A., Mvondo, Z. and Ntongo, J. 2011. Litter decomposition and nutrient dynamics of ten selected tree species in tropical rainforest of Ebom, Southwest Cameroon. International Journal of Biological and Chemical Sciences 51: 11-27.

King, R.F., Dromph, K.M. and Bardgett, R.D, 2002. Changes in species evenness of litter have no effect on decomposition process. Soil Biology and Biochemistry 35: 1959-1963.

Kominoski, J.S., Pringle, C.M., Ball, B.A., Bradford, M.A., Coleman, D.C., Hall, D.B. and Hunter, M.D, 2007. Non additive effects of leaf litter species diversity on breakdown dynamics in a detritus-based stream. Ecology 88(5): 1167-1176.

Leroy, C.J., Whitham, T.G., Wooley, S.C. and Marks, J.C. 2007. Within-species variation in foliar chemistry influences leaf-litter decomposition in a Utah river. Journal of the North American Benthological Society 26: 426-438.

Letouzey, R. 1968. Etude phytogéographie du Cameroun. Paris: Ed. Paul Le Chevalier.

Mapongmetsem, P. 2000. Jardins de case et domestication dans les trophiques: cas des savanes humides du Cameroun (Adamaoua). Com. ICRAF. Agroprolis international, p. 12.

Mapongmetsem, P., Kapchie, V. and Tefempa B. 2012. Diversity of local fruit trees and their contribution in sustaining the rural livelihood in the northern Cameroon. Ethiopian Journal of Environmental Studies and Management 1(5): 32-46.

Mapongmetsem, P., Benoit, L.B., Nkongmeneck, B.A., Ngassoum, M.B., Gübbük, H., Baye-Niwah C. and Longmou, J. 2005. Litter fall, decomposition and nutrients release in Vitex doniana sweet and Vitex madiensis Oliv. in the Sudano-Guinea savannah. Akdeniz Üniversitesi Ziraat Fakültesi Dergisi 18(1): 63-75.

Melillo, J.M., Aber, J.D. and Muratore, J.F. 1982. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63: 621‑626.

Moore, T., Trofymow, J., Taylor, B., Prescott, C., Camire, C., Duschene, L., Fyles, J., Kranabetter, M. and Morrison, I. 1999. Litter decomposition rates in Canadian forests. Global Change Biology 5: 75‑82.

Muyayabantu, G.M., Kadiata, B.D. and Nkongolo, K.K. 2012. Response of maize to different organic and inorganic fertilization regimes in monocrop and intercrop systems in a sub-Saharan Africa region. Journal of Soil Science and Environmental Management 3(2): 42-48.

Nsowa Immaculte Munkeng. 2014. Effet de mélange de litières sur le processus de leur décomposition dans les savanes de Ngaoundéré Cameroun : cas d’Annona senegalensis (Pers.), Syzygium guineense Var. guineense (Wild.) et Syzygium guineense Var. macrocarpum (Engl.).Memoire de master, Université de Ngaoundéré Faculté des sciences.61p.

Olson, J.S. 1963. Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44:322–331.

Pérez Harguindeguy, N., Blundo, C.M., Gurvich, D.E., Díaz, S. and Cuevas, E., 2008.More than the sum of its parts? Assessing litter heterogeneity effects on the decomposition of litter mixtures through leaf chemistry. Plant and Soil 303:151–159.

Prescott, C. 2005. Do rates of litter decomposition tell us anything we really need to know?. Forest Ecology and Management 220(1-3):66-74.

Rodier, J. 1978. L’analyse de l’eau : Chimie physico chimie, bactériologie, biologie. Dunod Technique. Paris (France).

Santonja, M. 2011. Impact du changement climatique sur la décomposition de litière en milieu méditerranéen. Thèse de doctorat. AIX Marseille université, 14p.

Schimel, J.P. and Hättenschwiller, S. 2007. Nitrogen transfer between decomposing leaves of different N status. Soil Biology and Biochemistry 39: 1428–1436.

Suchel, J.B. 1987. Les climats du Cameroun. Thèse doctorat d’état, Université de Bordeaux III. France.

Swan CM et Palmer MA, 2004. Leaf diversity alters litter breakdown in a Piedmont stream. Journal of the North American Benthological Society 23(1): 15-28.

Swan, C.M. and Palmer, M.A. 2006. Preferential feeding by an aquatic consumer mediates non‑additive decomposition of speciose leaf litter. Oecologia 149: 107‑114.

Swift, M., Heal, O. and Anderson J., 1979. Decomposition in Terrestrial Ecosystems. London: Blackwell Scientific Publication.

Tardif, A., Shipley, B., Bloor, J.M.G., Soussana, J.F., 2013. Can the biomass-ratio hypothesis predict mixed-species litter decomposition along a climate gradient? Annals of Botany 111(1): 135–141.

Vanderbilt, K.L., White, C.S., Hopkins, O. and Craig, J.A. 2008. Aboveground decomposition in and environments: results of a long-term study in central New Mexico. Journal of Arid Environments 72: 696-709.

Wall, D.H., Bradford, M.A., St John, M.G., Trofymow, J.A., Behan-Pelletier, V., Bignell, D.D.E., Dangerfield, J.M., Parton, W.J., Rusek, J., Voigt, W., Wolters, V., Gardel, H.Z., Ayuke, F.O., Bashford, R., Beljakova, O.I., Bohlen, P.J., Brauman, A., Flemming, S.,Henschel, J.R., Johnson, D.L., Jones, T.H., Kovarova, M., Kranabetter, J.M., Kutny, L., Lin, K.C., Maryati, M., Masse, D., Pokarzhevskii, A., Rahman, H., Sabara, M.G., Salamon, J.A., Swift, M.J., Varela, A., Vasconcelos, H.L., White, D. and Zou, X.M. 2008. Global decomposition experiment shows soil animal impacts on decomposition are climate‑dependent. Global Change Biology 14: 266‑2677.

Wardle, D., Bonner, K., and Nicholson, K. 1997. Biodiversity and plant litter: experimental evidence which does not support the view that enhanced species richness improves ecosystem function. Oikos 79: 247-258.

Wardle, D.A,, Nilsson, M.C. and Zackrisson, O. 2003. Determinants of litter mixing effects in a Swedish boreal forest. Soil Biology and Biochemistry 35:827-835.

Yang, X. and Chen, J. 2009. Plant litter quality influences the contribution of soil fauna to litter decomposition in humid tropical forests, southwestern China. Soil Biology and Biochemistry 41: 910‑918.

Yonkeu, S, 1993. Végétation des pâturages de l’Adamaoua, Cameroun: écologie et potentialité pastorale. Thèse de Doctorat, Université de Rennes I (sciences biologiques), France, 207p.

Yonkeu, S., Mapongmetsem, P. and Ngassoum, M. 1998. Distribution et caractérisation écologique d'une plante oléagineuse à usage alimentaire en Adamaoua (Cameroun): Lophira lanceolata Van Tiegh ex Keay. s.l.:s.n.








How to Cite

Jacob, M. T., Gregoire, B. N., Pale, M., Pélagie, D. N., & Adamou, I. (2020). Effect of litter mixture on litter decomposition and nutrient release of three agroforestry species in Sudano-Guinean savannah of Ngadoundere, Adamawa Cameroon. Journal of Degraded and Mining Lands Management, 7(2), 2065–2073. https://doi.org/10.15243/jdmlm.2020.072.2065



Research Article