

Arfarita, N., Hidayati, N., Rosyidah, A., Machfudz, M. and Higuchi, T. 2016. Exploration of indigenous soil bacteria producing-exopolysaccharides for stabilizing of aggregates land potential as biofertilizer. Journal of Degraded and Mining Lands Management 4(1): 697-702.
Arfarita, N., Lestari, M.W., Murwani, I. and Higuchi, T. 2017. Isolation of indigenous phosphate solubilizing bacteria from green bean rhizospheres. Journal of Degraded and Mining Lands Management 4(3): 845-851.
Bhardwaj, D., Ansari, M.W., Sahoo, R.K. and Tuteja, N. 2014. Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microbial Cell Factories 13:66.
Esteban, K., María, J.M, Patricia, S. and César, J.R. 2010. Organic and inorganic fertilizer effects on a degraded Patagonian rangeland. Plant and Soil 332:135–145.
Fernandez, L., Mercader, J.M., Planas-Felix, M. and Torrents, D. 2014. Adaptation to environmental factors shapes the organization of regulatory regions in microbial communities. BMC Genomics 15(1):877.
Finlay, W.J.J., Logan, N.A. and Sutherland, A.D. 2000. Bacillus cereus produces most emetic toxin at lower temperatures. Letters in Applied Microbiology 31:385–389.
Handayanto, E. and Hairiah, K. 2007. Soil Biology: Platform for Management of Healthy Soil. Pustaka Adipura, Yogyakarta (in Indonesian).
Husen, E., Simanungkalit, R.D.M. and Irawan. 2007. Characterization and quality assessment of Indonesian commercial biofertilizers. Indonesian Journal of Agricultural Science 8: 31-38.
Leghari, S.J., Wahocho, N.A, Laghari, G.M., Talpur, K.H., Wahocho, S.A. and Lashari, A.A. 2016. Role of nitrogen for plant growth and development: a review. Advances in Environmental Biology 10(9): 209-2018.
McGill, W.B. and Cole, C.V. 1981. Comparative aspects of cycling of organic C, N, S and P through soil organic matter. Geoderma 26:267–268. doi: 10.1016/0016-7061(81)90024-0.
Nuraini, Y., Arfarita, N. and Siswanto, B. 2015. Isolation and characteristic of nitrogen-fixing bacteria and phosphate-solubilizing bacteria from soil high in mercury in tailings and compost areas of artisanal gold mine. Agrivita Journal of Agricultural Science 37(1): 1-7.
Parka, M., Kima, C., Yanga, J., Leea, H., Shina. W., Kimb, S. and Sa, T. 2005. Isolation and characterization of diazotrophic growth promoting bacteria from rhizosphere of agricultural crops of Korea. Microbiological Research 160:127—133.
Prihastuti and Harsono, A. 2012. Decrease in the quality of Rhizobium biofertilizers. Sains & Matematika 1(1): 1–5 (in Indonesian).
Roper, M.M. and Gupta V.V.S.R. 2016.Enhancing non-symbiotic N2 fixation in Agriculture. The Open Agriculture Journal 10:7-27.
Azcón, R. and Barea, J.M. 1975. Synthesis of auxins, gibberellins and cytokinins by Azotobacter vinelandii and Azotobacter beijerinckii related to effects produced on tomato plants. Plant and Soil 43(3 ): 609-619.
Subba-Rao, N.S. 1995. Soil Microorganisms and Plant Growth. Science Pub Inc; 3rd edition (December 1995), 350p.
Torsvik, V. and Øvreås, L. 2002. Microbial diversity and function in soil: from genes to ecosystems. Current Opinion in Microbiology 5: 240-245.
West, A.W., Burges, H.D. and Dixon, T.J. 1985. Survival of Bacillus thuringiensis and Bacillus cereus spore inocula in soil: effects of pH, moisture, nutrient availability and indigenous microorganisms. Soil Biology and Biochemistry 17:657–665. doi: 10.1016/0038-0717(85)90043-4.