Assessing land subsidence from anthropogenic activity in Northern Sumatra, Indonesia revealed using SAR interferometry
DOI:
https://doi.org/10.15243/jdmlm.2025.122.7235Keywords:
GRACE, InSAR, land subsidence, rapid urban developmentAbstract
Land subsidence is a significant issue in urban areas globally, including several cities with a growing population in Northern Sumatra, Indonesia. This study employs Sentinel-1 SAR data and the Small Baseline Subset (SBAS) InSAR technique to monitor land subsidence in Medan, Deli Serdang, Dumai, North Aceh, and Lhokseumawe from 2015 to 2023. The SBAS algorithm was implemented in LiCSBAS with an unwrapped interferogram. Then corrected for atmospheric effects using GACOS, was employed to increase the results of the land subsidence. The analysis was enhanced using GRACE satellite data to assess the impact of groundwater depletion on subsidence. Results indicate significant subsidence across all study regions, particularly in Medan and Dumai, with rates ranging from -48.6 mm/year to +54.1 mm/year. The findings highlight the critical role of rapid urbanization, excessive groundwater extraction, and oil and gas exploration in driving subsidence. This study underscores the need for sustainable urban planning and aquifer management to mitigate future environmental and infrastructural risks.
References
Abidin, H.Z., Andreas, H., Gumilar, I. and J. Brinkman, J. 2015. Study on the risk and impacts of land subsidence in Jakarta. Proceedings of the International Association of Hydrological Sciences 372 (November):115-120. https://doi.org/10.5194/piahs-372-115-2015
Abidin, H.Z., Andreas, H., Gamal, M., Sadarviana, V., Darmawan, D., Surono, Hendrasto, M. and Suganda, O.K. 2007. Studying landslide displacements in the Ciloto area (Indonesia) using GPS surveys. Journal of Spatial Science 52(1):55-63. https://doi.org/10.1080/14498596.2007.9635100
Abidin, H.Z., Andreas, H., Gumilar, I., Fukuda, Y., Pohan, Y.E. and Deguchi, T. 2011. Land subsidence of Jakarta (Indonesia) and its relation with urban development. Natural Hazards 59(3):1753-771. https://doi.org/10.1007/s11069-011-9866-9
Abidin, H.Z., Djaja, R., Darmawan, D., Hadi, S., Akbar, A., Rajiyowiryono, H., Sudibyo, Y., Meilano, I., Kasuma, M.A., Kahar, J. and Subarya, C. 2001. Land subsidence of Jakarta (Indonesia) and its geodetic monitoring system. Natural Hazards 23:365-387. https://doi.org/10.1023/a:1011144602064
Addis, M.A. 1987. Mechanisms of sediment compaction responsible for oil field subsidence. Doctoral thesis, University of London. Thesis digitised by British Library EThOS.
Alfian, D., Meilianda, E., Ahmad, A., Syukri, M. and Opdyke, A. 2024. Application of spatial model the contribution of land subsidence caused by palm oil plantations land clearing to the escalating flood risk in the Trumon area, South Aceh Regency, Indonesia. E3S Web of Conferences 476:01056. https://doi.org/10.1051/e3sconf/202447601056
Alif, S.M., Anggara, O., Perdana, R.S., Hasannah, U. and Azizah, F.N. 2024. Analysis of presumed land subsidence in the cities of Lampung Province using InSAR and GNSS data. Journal of Geoscience, Engineering, Environment, and Technology 9(3):287-293. https://doi.org/10.25299/jgeet.2024.9.3.14096
Alif, S.M., Fattah, E.I., Kholil, M. and Anggara, O. 2021. Source of the 2019 Mw6. 9 Banten Intraslab earthquake modelled with GPS data inversion. Geodesy and Geodynamics 12(4):308-314. https://doi.org/10.1016/j.geog.2021.06.001
Amighpey, M. and Arabi, S. 2016. Studying land subsidence in Yazd province, Iran, by integration of InSAR and levelling measurements. Remote Sensing Applications: Society and Environment 4:1-8. https://doi.org/10.1016/j.rsase.2016.04.001
Anggara, O., Rahadianto, M.A.E., Al Attar, M.N., Alif, S.M., Perdana, R.S. and Nugraha, A. W. 2024. Assessing Recent Land Subsidence in Bandar Lampung City, Indonesia through time series InSAR from 2015 to 2023. Jurnal Geografi Gea 24(2):195-204. https://doi.org/10.17509/gea.v24i2.71315
Anggara, O., Welly, T.K., Fauzi, A.I., Alif, S.M., Perdana, R.S., Oktarina, S.W., Nuha, M.U., and Rosadi, U. 2023. Monitoring ground deformation of Sinabung volcano eruption 2018-2019 using DInSAR technique and GPS data. AIP Conference Proceedings 2654(1). https://doi.org/10.1063/5.0114428
Bawden, G.W., Thatcher, W., Stein, R.S., Hudnut, K.W. and Peltzer, G. 2001. Tectonic contraction across Los Angeles after removal of groundwater pumping effects. Nature 412 (6849):812-815. https://doi.org/10.1038/35090558
Berardino, P., Fornaro, G., Lanari, R. and Sansosti, E. 2002. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing 40(11):2375-2383. https://doi.org/10.1109/tgrs.2002.803792
BPS. 2023. Population Growth Rate - Statistical Table. www.bps.go.id. June 27, 2023. https://www.bps.go.id/id/statistics-table/2/MTk3NiMy/laju-pertumbuhan-penduduk.html (in Indonesian).
Budiana, D. and Dalimi, R. 2021. The economics comparison of power plants fuelled by wellhead gas and liquefied natural gas in Aceh Province. IOP Conference Series: Materials Science and Engineering 1041(1):012019. https://doi.org/10.1088/1757-899X/1041/1/012019
Castellazzi, P., Arroyo-Domínguez, N., Martel, R., Calderhead, A.I., Normand, J.C., Garfias, J. and Rivera, A. 2016. Land subsidence in major cities of Central Mexico: Interpreting InSAR-derived land subsidence mapping with hydrogeological data. International Journal of Applied Earth Observation and Geoinformation 47:102-111. https://doi.org/10.1016/j.jag.2015.12.002
Chaussard, E. 2024. Remote Sensing for Characterization of Geohazards and Natural Resources. Springer Nature. https://doi.org/10.1007/978-3-031-59306-2
Chaussard, E., Amelung, F., Abidin, H. and Hong, S.H. 2013. Sinking cities in Indonesia: ALOS PALSAR detects rapid subsidence due to groundwater and gas extraction. Remote Sensing of Environment 128:150-161. https://doi.org/10.1016/j.rse.2012.10.015
Chen, B., Gong, H., Li, X., Lei, K., Ke, Y., Duan, G. and Zhou, C. 2015. Spatial correlation between land subsidence and urbanization in Beijing, China. Natural Hazards 75(3):2637-2652. https://doi.org/10.1007/s11069-014-1451-6
Chen, C.W. and Zebker, H.A. 2002. Phase unwrapping for large SAR interferograms: Statistical segmentation and generalized network models. IEEE Transactions on Geoscience and Remote Sensing 40(8):1709-1719. https://doi.org/10.1109/TGRS.2002.802453
Chen, F., Lin, H., Zhang, Y. and Lu, Z. 2012. Ground subsidence geo-hazards induced by rapid urbanization: implications from InSAR observation and geological analysis. Natural Hazards and Earth System Sciences 12(4):935-942. https://doi.org/10.5194/nhess-12-935-2012
Chen, M., Tomas, R., Li, Z., Motagh, M., Li, T., Hu, L., Gong, H., Li, X., Yu, J. and Gong, X. 2016. Imaging land subsidence induced by groundwater extraction in Beijing (China) using satellite radar interferometry. Remote Sensing 8(6):468. https://doi.org/10.3390/rs14163950
Ciampalini, A., Solari, L., Giannecchini, R., Galanti, Y. and Moretti, S. 2019. Evaluation of subsidence induced by long-lasting buildings load using InSAR technique and geotechnical data: The case study of a Freight Terminal (Tuscany, Italy). International Journal of Applied Earth Observation and Geoinformation 82:101925. https://doi.org/10.1016/j.jag.2019.101925
Cigna, F. and Tapete, D. 2022. Urban growth and land subsidence: Multi-decadal investigation using human settlement data and satellite InSAR in Morelia, Mexico. Science of The Total Environment 811:152211. https://doi.org/10.1016/j.scitotenv.2021.152211
Conway, B.D. 2015. Land subsidence and earth fissures in south-central and southern Arizona, USA. Hydrogeology Journal 24 (3): 649-655. https://doi.org/10.1007/s10040-015-1329-z
Dixon, T.H., Amelung, F., Ferretti, A., Novali, F., Rocca, F., Dokka, R., Sella, G., Kim, S., Wdowinski, S. and Whitman, D. 2006. Subsidence and flooding in New Orleans. Nature 441(7093):587-588. https://doi.org/10.1038/441587a
Dong, J., Niu, R., Li, B., Xu, H. and Wang, S. 2023. Potential landslides identification based on temporal and spatial filtering of SBAS-InSAR results. Geomatics, Natural Hazards and Risk 14(1):52-75. https://doi.org/10.1080/19475705.2022.2154574
Fryksten, J. and Nilfouroushan, F. 2019. Analysis of clay-induced land subsidence in Uppsala City using Sentinel-1 SAR data and precise leveling. Remote Sensing 11(23):2764. https://doi.org/10.3390/rs11232764
Galloway, D.L. and Burbey, T.J. 2011. Review: Regional land subsidence accompanying groundwater Extraction. Hydrogeology Journal 19(8):1459-1486. https://doi.org/10.1007/S10040-011-0775-5
Herrera-Garcia, G., Ezquerro, P., Tomas, R., Bejar-Pizarro, M., Lopez-Vinielles, J., Rossi, M., Mateos, R.M., Carreon-Freyre, D., Lambert, J., Teatini, P., Cabral-Cano, E., Erkens, G., Galloway, D., Hung, W.C., Kakar, N., Sneed, M., Tosi, L., Wang, H. and Ye, S. 2021. Mapping the global threat of land subsidence. Science 371(6524):34-36. https://doi.org/10.1126/science.abb8549
Hidayat, F. and Thomiyah, I. 2022. Investigating climate change risk of “oil and gas” city: Case of Dumai City, Indonesia. IOP Conference Series: Earth and Environmental Science 950(1):012017. https://doi.org/10.1088/1757-899X/924/1/012017
Hussain, M.A., Chen, Z., Zheng, Y., Shoaib, M., Ma, J., Ahmad, I., Asghar, A. and Khan, J. 2022. PS-InSAR based monitoring of land subsidence by groundwater extraction for Lahore Metropolitan City, Pakistan. Remote Sensing 14(16):3950. https://doi.org/10.3390/rs14163950
Jing, W., Yao, L., Zhao, X., Zhang, P., Liu, Y., Xia, X., Song, J., Yang, J., Li, Y. and Zhou, C. 2019. Understanding terrestrial water storage declining trends in the Yellow River basin. Journal of Geophysical Research: Atmospheres 124(23):12963-12984. https://doi.org/10.1029/2019jd031432
Kausarian, H., Batara, B. and Putra, D.B.E. 2018. The phenomena of flood caused by the seawater tidal and its solution for the rapid-growth city: A case study in Dumai City, Riau Province, Indonesia. Journal of Geoscience, Engineering, Environment, and Technology 3(1):39-46. https://doi.org/10.24273/jgeet.2018.3.01.1221
Landerer, F. 2021. TELLUS_GRAC_L3_JPL_RL06_LND_v04. Ver. RL06 v04. PO.DAAC, CA, USA. Dataset accessed [2024-9-15] at https://doi.org/10.5067/TELND-3AJ64
Lazecky, M., Spaans, K., Gonzalez, P.J., Maghsoudi, Y., Morishita, Y., Albino, F., Elliott, J., Greenall, N., Hatton, E., Hooper, A., Juncu, D., McDougall, A., Walters, R.J., Watson, C.S., Weiss, J.R. and Wright, T.J. 2020. LiCSAR: An automatic InSAR tool for measuring and monitoring tectonic and volcanic activity. Remote Sensing 12(15):2430. https://doi.org/10.3390/rs12152430
Lumban-Gaol, J., Sumantyo, J.T.S., Tambunan, E., Situmorang, D., Antara, I.M.O.G., Arhatin, R.E., Osawa, T., Sinurat, M.E. and Suhita, N.P.A.R. 2023. Multi-sensor satellite to assess sea level rise and land subsidence impact on the flood crisis on the east coast of North Sumatera and Medan City, Indonesia. PrePrints. https://doi.org/10.20944/preprints202311.0056.v1
Lumban-Gaol, J., Sumantyo, J.T.S., Tambunan, E., Situmorang, D., Antara, I.M.O.G., Sinurat, M.E., Suhita, N.P.A.R., Osawa, T. and Arhatin, R.E. 2024. Sea level rise, land subsidence, and flood disaster vulnerability assessment: A case study in Medan City, Indonesia. Remote Sensing 16(5):865. https://doi.org/10.3390/rs16050865
Metois, M., Benjelloun, M., Lasserre, C., Grandin, R., Barrier, L., Dushi, E. and Koci, R. 2020. Subsidence associated with oil extraction, measured from time series analysis of Sentinel-1 data: case study of the Patos-Marinza oil field, Albania. Solid Earth 11(2):363-378. https://doi.org/10.5194/se-11-363-2020
Morishita, Y., Lazecky, M., Wright, T.J., Weiss, J.R., Elliott, J.R. and Hooper, A. 2020. LiCSBAS: An open-source insar time series analysis package integrated with the LiCSAR automated sentinel-1 InSAR processor. Remote Sensing 12(3):5-8. https://doi.org/10.3390/rs12030424
Mulyadi, A. and Hamidy, R. 2021. Development of mangrove ecotourism in Bandar Bakau Dumai based on disaster mitigation. International Journal of Sustainable Development and Planning 16(7):1359-1367. https://doi.org/10.18280/ijsdp.160716
Natadikara, R., Fauzi, A.I., Anggara, O., Perdana, R.S., Alif, S.M., Julzarika, A., Nurtyawan, R. and Rohman, A. 2023. Monitoring deformation of Anak Krakatoa Volcano using differential interferometry synthetic aperture radar (DInSAR) method. AIP Conference Proceedings 2941:1. https://doi.org/10.1063/5.0181540
Ng, A.H.M., Ge, L., Li, X., Abidin, H.Z., Andreas, H. and Zhang, K. 2012. Mapping land subsidence in Jakarta, Indonesia using persistent scatterer interferometry (PSI) technique with ALOS PALSAR. International Journal of Applied Earth Observation and Geoinformation 18:232-242. https://doi.org/10.1016/j.jag.2012.01.018
Osipov, V I. 2015. The Terzaghi theory of effective stress. SpringerBriefs in Earth Sciences, January:35-37. https://doi.org/10.18280/ijsdp.160716
Raspini, F., Caleca, F., Del Soldato, M., Festa, D., Confuorto, P. and Bianchini, S. 2022. Review of satellite radar interferometry for subsidence analysis. Earth-Science Reviews 235:104239. https://doi.org/10.1016/j.earscirev.2022.104239
Savitri, A., Achmad, A. and Fadhly, N. 2021. The change of land use patterns and cover on the surface runoff in Krueng Meuraksa sub-watershed. IOP Conference Series: Earth and Environmental Science 847(1):012008. https://doi.org/10.1088/1755-1315/847/1/012008
Shamshiri, R., Motagh, M., Baes, M. and Sharifi, M.A. 2014. Deformation analysis of the Lake Urmia causeway (LUC) embankments in Northwest Iran: insights from multi-sensor interferometry synthetic aperture radar (InSAR) data and finite element modeling. Journal of Geodesy 88. https://doi.org/10.1007/s00190-014-0752-6
Solari, L., Montalti, R., Barra, A., Monserrat, O., Bianchini, S. and Crosetto, M. 2020. Multi-temporal satellite interferometry for fast-motion detection: An application to salt solution mining. Remote Sensing 12(23):3919. https://doi.org/10.3390/rs12233919
Su, X., Ping, J. and Ye, Q. 2011. Terrestrial water variations in the north China plain revealed by the GRACE Mission. Science China Earth Sciences 54(12):1965-1970. https://doi.org/10.1007/s11430-011-4280-4
Susilo, S., Salman, R., Hermawan, W., Widyaningrum, R., Wibowo, S.T., Lumban-Gaol, Y.A., Meilano, I. and Yun, S.H. 2023. GNSS land subsidence observations along the northern coastline of Java, Indonesia. Scientific Data 10(1):421. https://doi.org/10.1038/s41597-023-02274-0
Tomas, R., Marquez, Y., Lopez-Sanchez, J.M., Delgado, J., Blanco, P., Mallorqui, J.J., Martinez, M., Herrera, G. and Mulas, J. 2005. Mapping ground subsidence induced by aquifer overexploitation using advanced Differential SAR Interferometry: Vega Media of the Segura River (SE Spain) case study. Remote Sensing of Environment 98(2-3). https://doi.org/10.1016/j.rse.2005.08.003
Tzampoglou, P. and Loupasakis, C. 2018. Evaluating geological and geotechnical data for the study of land subsidence phenomena at the perimeter of the Amyntaio coalmine, Greece. International Journal of Mining Science and Technology 28(4):601-612. https://doi.org/10.1016/j.ijmst.2017.11.002
Vasco, D.W., Kim, K.H., Farr, T.G., Reager, J.T., Bekaert, D., Sangha, S.S., Rutqvist, J. and Beaudoing, H.K. 2022. Using Sentinel-1 and GRACE satellite data to monitor the hydrological variations within the Tulare Basin, California. Scientific Reports 12(1):3867. https://doi.org/10.1038/s41598-022-07650-1
Wang, G., Li, P., Li, Z., Liang, C. and Wang, H. 2022. Coastal subsidence detection and characterization caused by brine mining over the Yellow River Delta using time series InSAR and PCA. International Journal of Applied Earth Observation and Geoinformation 114, November 2022, 103077. https://doi.org/10.1016/j.jag.2022.103077
Wang, Q., Yu, W., Xu, B. and Wei, G. 2019. Assessing the use of GACOS products for SBAS-INSAR deformation monitoring: A case in Southern California. Sensors 19(18):3894. https://doi.org/10.3390/s19183894
Wang, Q., Zheng, W., Yin, W., Kang, G., Huang, Q. and Shen, Y. 2023. Improving the resolution of GRACE/InSAR groundwater storage estimations using a new subsidence feature weighted combination scheme. Water 15(6):1017. https://doi.org/10.3390/w15061017
Yu, C., Li, Z., Penna, N.T. and Crippa, P. 2018. Generic atmospheric correction model for interferometric synthetic aperture radar observations. Journal of Geophysical Research: Solid Earth 123(10):9202-9222. https://doi.org/10.1029/2017JB015305
Downloads
Submitted
Accepted
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Journal of Degraded and Mining Lands Management

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Submission of a manuscript implies: that the work described has not been published before (except in the form of an abstract or as part of a published lecture, or thesis) that it is not under consideration for publication elsewhere; that if and when the manuscript is accepted for publication, the authors agree to automatic transfer of the copyright to the publisher.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Scientific Journal by Eko Handayanto is licensed under a Creative Commons Attribution 4.0 International License.
Based on a work at https://ub.ac.id.
Permissions beyond the scope of this license may be available at https://ircmedmind.ub.ac.id/.