Harnessing hyperaccumulator (Brassica oleracea var. alboglabra) extract for green synthesis of nickel oxide nanoparticles: A prospective route for post-phytoremediation
DOI:
https://doi.org/10.15243/jdmlm.2024.114.6427Keywords:
green syhthesis, hyperaccumulator, nanoparticle, nickel oxide, phytoremediationAbstract
Even though phytoremediation is considered a green technology for remediating heavy metals, there are some problems with the application of this technology, particularly when it comes to managing the biomass that is used. So, processing biomass needs to be given a lot of attention. This study outlined the utilization of extracts obtained from the hyperaccumulator plant Brassica oleracea var. alboglabra to synthesize nickel oxide nanoparticles. Subsequently, the nanoparticle underwent testing to determine its suitability as an absorbent for heavy metals, specifically lead, as well as its efficacy as an antifungal agent against Fusarium sp. strain. The characterization of nickel oxide nanoparticles involved several measurements, such as scanning electron microscopy analysis, high- and low-resolution transmission electron microscopy, energy dispersive spectroscopy, X-ray diffraction, and hysteresis curve acquisition. The research findings indicate that the extract from hyperaccumulators can be utilized for the synthesis of NiO, which exhibits an absorption capacity exceeding 98% and serves as an efficient antifungal agent against Fusarium sp. pathogens. The approach utilized in this study not only prioritizes "green" and sustainability factors but also takes into account the economic aspects associated with the items being manufactured. The research has important implications in two areas. Firstly, it demonstrates the utilization of natural resources (B. oleracea var. alboglabra) in the production of nickel oxide, which serves as a safer and more eco-friendly substitute for dangerous chemicals. Furthermore, it aids in the advancement of novel techniques for effectively managing biomass hyperaccumulators.
References
Abbasi, B. A., Iqbal, J., Yaseen, T., Zahra, S. A., Ali, S., Uddin, S. and Chalgham, W. 2023. Exploring Physical Characterization and Different Bio-Applications of Elaeagnus angustifolia Orchestrated Nickel Oxide Nanoparticles. Molecules, 28(2), 654. https://doi.org/10.3390/molecules28020654
Abdulazeem, L., Alasmari, A. F., Alharbi, M., Alshammari, A. and Muhseen, Z. T. 2023. Utilization of aqueous broccoli florets extract for green synthesis and characterization of silver nanoparticles, with potential biological applications. Heliyon, 9(9). https://doi.org/10.1016/j.heliyon.2023.e19723
Agale, A. A., Gaikwad, S. T. and Rajbhoj, A. S. 2017. Nanosized Synthesis of Nickel Oxide by Electrochemical Reduction Method and their Antifungal Screening. Journal of Cluster Science, 28(4), 2097-2109. doi:10.1007/s10876-017-1203-3. https://doi.org/10.1007/s10876-017-1203-3
Ahmad, W., Bhatt, S. C., Verma, M., Kumar, V. and Kim, H. 2022. A review on current trends in the green synthesis of nickel oxide nanoparticles, characterizations, and their applications. Environmental Nanotechnology, Monitoring & Management, 18, 100674. https://doi.org/10.1016/j.enmm.2022.100674
Alafnan, S., Awotunde, A., Glatz, G., Adjei, S., Alrumaih, I. and Gowida, A. 2021. Langmuir adsorption isotherm in unconventional resources: Applicability and limitations. Journal of Petroleum Science and Engineering, 207, 109172. https://doi.org/10.1016/j.petrol.2021.109172
Alagiri, M., Ponnusamy, S. and Muthamizhchelvan, C. 2011. Synthesis and characterization of NiO nanoparticles by sol-gel method. Journal of Materials Science: Materials in Electronics, 23(3), 728-732. https://doi.org/10.1007/s10854-011-0479-6
Al-Ghouti, M. A., & Da'ana, D. A. 2020. Guidelines for the use and interpretation of adsorption isotherm models: A review. Journal of Hazardous Materials, 393, 122383. https://doi.org/10.1016/j.jhazmat.2020.122383
Anand, G. T., Nithiyavathi, R., Ramesh, R., Sundaram, S. J. and Kaviyarasu, K. 202. Structural and optical properties of nickel oxide nanoparticles: Investigation of antimicrobial applications. Surfaces and Interfaces, 18, 100460. https://doi.org/10.1016/j.surfin.2020.100460
Ban, D., U ila, Z., Major, N., Prekalj, B. and Perkovi, J., 2020. The Effect of Different Extraction Protocols on Brassica oleracea var. acephala Antioxidant Activity, Bioactive Compounds, and Sugar Pro?le. Plants, 9(1792), 1 13. https://doi.org/10.3390/plants9121792
Bhoye, M., Pansambal, S., Basnet, P., Lin, K. Y. A., Gutierrez-Mercado, K. Y., Pérez-Larios, A. and Ghotekar, S. 2023. Eco-Friendly Synthesis of Ni/NiO Nanoparticles Using Gymnema sylvestre Leaves Extract for Antifungal Activity. Journal of Composites Science, 7(3), 105. https://doi.org/10.3390/jcs7030105
Boudiaf, M., Messai, Y., Bentouhami, E., Schmutz, M., Blanck, C., Ruhlmann, L. and Mekki, D. E. 2021. Green synthesis of NiO nanoparticles using Nigella sativa extract and their enhanced electro-catalytic activity for the 4-nitrophenol degradation. Journal of Physics and Chemistry of Solids, 153, 110020. https://doi.org/10.1016/j.jpcs.2021.110020
Brooks, R. R., Chambers, M. F., Nicks, L. J. and Robinson, B. H. 1998. Phytomining. Trends in Plant Science, 3(9), 359-362. https://doi.org/10.1016/S1360-1385(98)01283-7
Chai, Y., Chen, A., Bai, M., Peng, L., Shao, J., Yuan, J. and Peng, C. 2022. Valorization of heavy metal contaminated biomass: Recycling and expanding to functional materials. Journal of Cleaner Production, 366, 132771. https://doi.org/10.1016/j.jclepro.2022.132771
Chen, H., Wang, X., Lyu, X., Xu, L., Wang, J. and Lu, X. 2019. Hydrothermal conversion of the hyperaccumulator Sedum alfredii Hance for efficiently recovering heavy metals and bio-oil. Journal of Environmental Chemical Engineering, 7(5), 103321. https://doi.org/10.1016/j.jece.2019.103321
Chi, G., Fang, Y., Zhu, B., Guo, N. and Chen, X. 2024. Intercropping with Brassica juncea L. enhances maize yield and promotes phytoremediation of cadmium-contaminated soil by changing rhizosphere properties. Journal of Hazardous Materials, 461, 132727. https://doi.org/10.1016/j.jhazmat.2023.132727
Cui, X., Zhang, J., Wang, X., Pan, M., Lin, Q., Khan, K. Y. and Chen, G. 2021. A review on the thermal treatment of heavy metal hyperaccumulator: Fates of heavy metals and generation of products. Journal of Hazardous Materials, 405, 123832. https://doi.org/10.1016/j.jhazmat.2020.123832
De, A. and Kalita, D. 2023. Bio-fabricated gold and silver nanoparticle based plasmonic sensors for detection of environmental pollutants: an overview. Critical Reviews in Analytical Chemistry, 53(3), 672-688. https://doi.org/10.1080/10408347.2021.1970507
Deng, Z., Wang, W., Tan, H and Cao, L. 2012. Characterization of Heavy Metal-Resistant Endophytic Yeast Cryptococcus sp. CBSB78 from Rapes (Brassica chinensis) and Its Potential in Promoting the Growth of Brassica spp. in Metal-Contaminated Soils. Water, Air, & Soil Pollution, 223(8), 5321-5329. https://doi.org/10.1007/s11270-012-1282-6
Dhiman, S., Varma, A., Rao, M., Prasad, R. and Goel, A. 2023. Deciphering the fertilizing and disease suppression potential of phytofabricated zinc oxide nanoparticles on Brassica juncea. Environmental Research, 116276. https://doi.org/10.1016/j.envres.2023.116276
Dinh, T., Kovacs, H. and Dobo, Z. (2023). The fate of noble metals and rare earth elements during pelletized biomass combustion. Heliyon. https://doi.org/10.1016/j.heliyon.2023.e23546
dos Santos Nascimento, J., Lima, L. H. V., Biondi, C. M. and do Nascimento, C. W. A. 2024. Citric Acid-Assisted Accumulation of Ni, Cr, and Co by Maize Successively Grown in a Tropical Ultramafic Soil. Water, Air, & Soil Pollution, 235(1), 2. https://doi.org/10.1007/s11270-023-06816-5
Faraji M, Yamini Y and Rezaee M. 2010. Magnetic nanoparticles: synthesis, stabilization, functionalization, characterization, and applications. Journal of the IranianChemical Society. https://doi.org/10.1007/BF03245856
Feiona, T. A., Sabeena, G., Bagavathy, M. S., Pushpalaksmi, E., Jenson Samraj, J. and Annadurai, G. 2021. Recent Advances in the Synthesis and Characterization of Nanoparticles: A Green Adeptness for Photocatalytic and Antibacterial Activity. Nature Environment & Pollution Technology, 20(2). https://doi.org/10.46488/NEPT.2021.v20i02.024
Gebretinsae, H. G., Tsegay, M. G. and Nuru, Z. Y. 2021. Biosynthesis of nickel oxide (NiO) nanoparticles from cactus plant extract. Materials Today: Proceedings, 36, 566-570. https://doi.org/10.1016/j.matpr.2020.05.331
Habtemariam, A. B., & Oumer, M. 2020. Plant extract mediated synthesis of nickel oxide nanoparticles. Metals and Maaterials. International, 2, 205-209. https://doi.org/10.33263/Materials22.205209
Haider, A., Ijaz, M., Ali, S., Haider, J., Imran, M., Majeed, H. and Ikram, M. 2020. Green synthesized phytochemically (Zingiber officinale and Allium sativum) reduced nickel oxide nanoparticles confirmed bactericidal and catalytic potential. Nanoscale Research Letters, 15, 1-11. https://doi.org/10.1186/s11671-020-3283-5
Hamdan, A. M., Bijaksana, S., Tjoa, A., Dahrin, D. and Kirana, K. H. (2019). Magnetic characterizations of nickel hyperaccumulating plants (Planchonella oxyhedra and Rinorea bengalensis) from Halmahera, Indonesia. International Journal of Phytoremediation, 21(4), 364-371. https://doi.org/10.1080/15226514.2018.1524839
Hamdan, A. M., Kirana, K. H., Hakim, F., Iksan, M., Bijaksana, S., Mariyanto, M. and Wahid, M. A. 2022. Magnetic susceptibilities of surface sediments from estuary rivers in volcanic regions. Environmental Monitoring and Assessment, 194(4), 239. https://doi.org/10.1007/s10661-022-09891-z
Hamdan, AM., Bijaksana, S., Tjoa, A., Dahrin, D., Fajar, S. J. and Kirana, K. H. 2020. Use and validation of magnetic properties for differentiating nickel hyperaccumulators and non-nickel hyperaccumulators in ultramafic regions. Journal of Geochemical Exploration, 216, 106581. https://doi.org/10.1016/j.gexplo.2020.106581
Hamdan, AM., Rahmi, R., Hafidz, A. and Risplaman, R. (2021). Future direction of Au agromining on how to solve artisanal and small scale gold mining problems. Journal of Degraded and Mining Lands Management, 8(4), 2971-2984. https://doi.org/10.15243/jdmlm.2021.084.2971
Hamdan, AM., Sardi, A., Reksamunandar, P. R., Maulida, Z., Arsa, D. A., Lubis, S. S. and Nisah, K. 2024. Green synthesis of NiO nanoparticles using a Cd hyperaccumulator (Lactuca sativa L.) and its application as a Pb (II) and Cu (II) adsorbent. Environmental Nanotechnology, Monitoring & Management, 100910. https://doi.org/10.1016/j.enmm.2023.100910
Haq, S., Dildar, S., Ali, M. B., Mezni, A., Hedfi, A., Shahzad, M. I. and Shah, A. 2021. Antimicrobial and antioxidant properties of biosynthesized of NiO nanoparticles using Raphanus sativus (R. sativus) extract. Materials Research Express, 8(5), 055006. https://doi.org/10.1088/2053-1591/abfc7c
Hasson, S. S., Alsammarraie, A. M. A., 2022. Synthesis of nickel oxide nanoparticles by Sol- gel method. International Journal of Health Sciences 6: 48938 48947. https://doi.org/10.53730/ijhs.v6nS7.13692
Houzelot, V., Laubie, B., Pontvianne, S. and Simonnot, M. O. 2017. Effect of up-scaling on the quality of ashes obtained from hyperaccumulator biomass to recover Ni by agromining. Chemical Engineering Research and Design, 120, 26-33. https://doi.org/10.1016/j.cherd.2017.02.002
Iqbal, A., Haq, A. U., Cerrón-Calle, G. A., Naqvi, S. A. R., Westerhoff, P. and Garcia-Segura, S. 2021. Green synthesis of flower-shaped copper oxide and nickel oxide nanoparticles via Capparis decidua leaf extract for synergic adsorption-photocatalytic degradation of pesticides. Catalysts, 11(7), 806. https://doi.org/10.3390/catal11070806
Iqbal, J., Abbasi, B. A., Ahmad, R., Mahmoodi, M., Munir, A., Zahra, S. A. and Capasso, R. 2020. Phytogenic synthesis of nickel oxide nanoparticles (NiO) using fresh leaves extract of Rhamnus triquetra (wall.) and investigation of its multiple in vitro biological potentials. Biomedicines, 8(5), 117. https://doi.org/10.3390/biomedicines8050117
Ismail, M. and Wang Xiangke, S. 2023. Green Synthesis of Silver Nanoparticle from Brassica Oleracea for Determination of Paracetamol in the Presence of Tyrosine, Leucine and Alanine by Derivative Method. Pakistan Journal of Medical & Health Sciences, 17(01), 641-641. https://doi.org/10.53350/pjmhs2023171641
Jeyaraj, S. and Saral, M.(2023 Bio-Fabrication of Zno Nps from Brassica Juncea Extract, It's Biological Activity and DNA Binding Capability. It's Biological Activity and DNA Binding Capability.,SSRN. https://doi.org/10.2139/ssrn.4632286
Jiang, Y., Zhao, X., Zhu, L., Liu, J. S. and Deng, K. 2021. Total-effect test is superfluous for establishing complementary mediation. Statistica Sinica, 31(4), 1961-1983. https://doi.org/10.5705/ss.202019.0150
Kalaie, M. R., Youzbashi, A. A., Meshkot, M. A. and Hosseini-Nasab, F. (2016). Preparation and characterization of superparamagnetic nickel oxide particles by chemical route. Applied Nanoscience, 6, 789-795. https://doi.org/10.1007/s13204-015-0498-3
Kara, M. and Soylu, E. M. 2020. Assessment of glucosinolate-derived isothiocyanates as potential natural antifungal compounds against citrus sour rot disease agent Geotrichum citri-aurantii. Journal of Phytopathology, 168(5), 279-289. https://doi.org/10.1111/jph.12889
Keysers, C., Gazzola, V. and Wagenmakers, E. J. 2020. Using Bayes factor hypothesis testing in neuroscience to establish evidence of absence. Nature neuroscience, 23(7), 788-799. https://doi.org/10.1038/s41593-020-0660-4
Khan, S. A., Shahid, S., Ayaz, A., Alkahtani, J., Elshikh, M. S. and Riaz, T. 2021. Phytomolecules-coated NiO nanoparticles synthesis using abutilon indicum leaf extract: antioxidant, antibacterial, and anticancer activities. International Journal of Nanomedicine, 1757-1773. https://doi.org/10.2147/IJN.S294012
Kicinska, A., Pomykala, R. and Izquierdo-Diaz, M. 2022. Changes in soil pH and mobility of heavy metals in contaminated soils. European Journal of Soil Science, 73(1), e13203. https://doi.org/10.1111/ejss.13203
Kim, S. W., Jung, J. H., Lamsal, K., Kim, Y. S., Min, J. S. and Lee, Y. S. 2012. Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi. Mycobiology, 40(1), 53-58. https://doi.org/10.5941/MYCO.2012.40.1.053
Kumari, A. and Pandey, A. 2023. A review on green synthesis of nickel oxide nanoparticles and their photocatalytic activities. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.02.043
Laubie, B., Vaughan, J. and Simonnot, M. O. 2021. Processing of Hyperaccumulator Plants to Nickel Products. Agromining: Farming for Metals: Extracting Unconventional Resources Using Plants, 47-61. https://doi.org/10.1007/978-3-030-58904-2_3
Li, S., Ji, B. and Zhang, W. 2023. A review on the thermochemical treatments of biomass: Implications for hydrochar production and rare earth element recovery from hyperaccumulators. Chemosphere, 140140. https://doi.org/10.1016/j.chemosphere.2023.140140
Li, Z., Yang, Y., Guan, W., Yu, H., Zou, L., Cui, J. and Teng, Y. 2023. Insight into the subcellular mechanism of maximizing Cd accumulation in hyperaccumulator Solanum nigrum L. under the action of biodegradable chelating agent. Environmental and Experimental Botany, 207, 105226. https://doi.org/10.1016/j.envexpbot.2023.105226
Lima, L. W., Castleberry, M., Wangeline, A. L., Aguirre, B., Dall'Acqua, S., Pilon-Smits, E. A. and Schiavon, M. 2022. Hyperaccumulator Stanleya pinnata: in situ fitness in relation to tissue selenium concentration. Plants, 11(5), 690. https://doi.org/10.3390/plants11050690
Manjuladevi, M., Anitha, R. and Manonmani, S. 2018. Kinetic study on adsorption of Cr(VI), Ni(II), Cd(II) and Pb(II) ions from aqueous solutions using activated carbon prepared from Cucumis melo peel. Applied Water Science, 8(1). https://doi.org/10.1007/s13201-018-0674-1
Manojkumar, U., Kaliannan, D., Srinivasan, V., Balasubramanian, B., Kamyab, H., Mussa, Z. H. and Palaninaicker, S. 2023. Green synthesis of zinc oxide nanoparticles using Brassica oleracea var. botrytis leaf extract: Photocatalytic, antimicrobial and larvicidal activity. Chemosphere, 323, 138263. https://doi.org/10.1016/j.chemosphere.2023.138263
Mohan, A., Kaiser, M., Verheijen, M. A., Schropp, R. E. I. and Rath, J. K. 2017. Microscopic studies of polycrystalline nanoparticle growth in free space. Journal of Crystal Growth, 467, 137-144. https://doi.org/10.1016/j.jcrysgro.2017.03.044
Noukelag, S. K., Mohamed, H. E. A., Moussa, B., Razanamahandry, L. C., Ntwampe, S. K. O. and Arendse, C. J. 2021. Structural and optical investigations of biosynthesized bunsenite NiO nanoparticles (NPs) via an aqueous extract of Rosmarinus officinalis (rosemary) leaves. Materials Today: Proceedings, 36, 245-250. https://doi.org/10.1016/j.matpr.2020.03.314
Pandian, C. J., Palanivel, R. and Dhananasekaran, S., 2015. Green synthesis of nickel nanoparticles using Ocimum sanctum and their application in dye and pollutant adsorption. Chinese Journal of Chemical Engineering 23: 1307-1315. https://doi.org/10.1016/j.cjche.2015.05.012
Paul, S., Saha, S., Chakraborty, A., Jana, A. and Mukherjee, S. (2023). Co-cultivation as a Strategy to Reduce Food Chain-Mediated Arsenic Contamination in Human Beings. Applied Biochemistry and Biotechnology, 195(4), 2252-2260. https://doi.org/10.1007/s12010-022-03987-5
Ramesh, R., Yamini, V., Sundaram, S. J., Khan, F. L. A. and Kaviyarasu, K. 2021. Investigation of structural and optical properties of NiO nanoparticles mediated by Plectranthus amboinicus leaf extract. Materials Today: Proceedings, 36, 268-272. https://doi.org/10.1016/j.matpr.2020.03.581
Sabouri, Z., Akbari, A., Hosseini, H. A., Khatami, M. and Darroudi, M. 2021. Green-based bio-synthesis of nickel oxide nanoparticles in Arabic gum and examination of their cytotoxicity, photocatalytic and antibacterial effects. Green Chemistry Letters and Reviews, 14(2), 404-414. https://doi.org/10.1080/17518253.2021.1923824
Sato, K., Li, J. G., Kamiya, H., and Ishigaki, T. 2008. Ultrasonic dispersion of TiO2 nanoparticles in aqueous suspension. Journal of the American Ceramic Society, 91(8), 2481-2487. https://doi.org/10.1111/j.1551-2916.2008.02493.x
Shafey, A. M. E. 2020. Green synthesis of metal and metal oxide nanoparticles from plant leaf extracts and their applications: A review. Green Processing and Synthesis, 9(1), 304-339. https://doi.org/10.1515/gps-2020-0031
Shrestha, S., Wang, B. and Dutta, P. 2020. Nanoparticle processing: Understanding and controlling aggregation. Advances in Colloid and Interface Science, 102162. https://doi.org/10.1016/j.cis.2020.102162
Shwetha, UR, Rajith Kumar CR, Kiran MS, Virupaxappa S. Betageri, Latha MS, Veerapur, R., Lamraoui, G. 2021. "Biogenic synthesis of NiO nanoparticles using areca catechu leaf extract and their antidiabetic and cytotoxic effects." Molecules 26, no. 9 2448. https://doi.org/10.3390/molecules26092448
Uddin, S., Safdar, L., Yaseen, B. T., Laila, S., Anwar, S., Ahsan, B., Saqib, M., Umar, S., Quraishi, M. 2021. Green Synthesis of Nickel oxide Nanoparticles Using Leaf Extract of Berberis balochistanica: Characterization , and diverse biological applications. Microsc Res Tech, February, 1 13. https://doi.org/10.1002/jemt.23756
Venkatalakshmi, N., Kini, H. J., & Naik, H. B. 2023. Green-synthesized Nickel oxide nanoparticles: Magnetic and biomedical applications. Inorganic Chemistry Communications, 151, 110490. https://doi.org/10.1016/j.inoche.2023.110490
Xiao, Yawen, Ahmed S. Helal, Eva Mazario, Alvaro Mayoral, Alexandre Chevillot-Biraud, Philippe Decorse, Rémi Losno. 2023 "Functionalized maghemite nanoparticles for enhanced adsorption of uranium from simulated wastewater and magnetic harvesting." Environmental Research 216: 114569. https://doi.org/10.1016/j.envres.2022.114569
Xu, F., Li, H., Yan, H., Qiao, Y., Chen, X., Shao, M., ... & Xu, Y. 2023. Potential use of Rorippa sylvestris (L.) Besser. as a cadmium hyperaccumulator for phytoremediation. Current Plant Biology, 100304. https://doi.org/10.1016/j.cpb.2023.100304
Yesilyurt, S. 2023. Phytoremediation Method and Brassica Family: Removal of Chromium, Cadmium and Lead Accumulation with Broccoli (Brassica oleracea var. italica). Results in Chemistry, 101005. https://doi.org/10.1016/j.rechem.2023.101005
Zhang, X., Houzelot, V., Bani, A., Morel, J. L., Echevarria, G., & Simonnot, M. O. 2014. Selection and combustion of Ni-hyperaccumulators for the phytomining process. International Journal of Phytoremediation, 16(10), 1058-1072. https://doi.org/10.1080/15226514.2013.810585
Zhang, Y., Mahdavi, B., Mohammadhosseini, M., Rezaei-Seresht, E., Paydarfard, S., Qorbani, M., ... & Karimi, E. 2021. Green synthesis of NiO nanoparticles using Calendula officinalis extract: Chemical charactrization, antioxidant, cytotoxicity, and anti-esophageal carcinoma properties. Arabian Journal of Chemistry, 14(5), 103105. https://doi.org/10.1016/j.arabjc.2021.103105
Zhen, W., Weichselbaum, R. R., & Lin, W. 2023. Nanoparticle-Mediated Radiotherapy Remodels the Tumor Microenvironment to Enhance Antitumor Efficacy. Advanced Materials, 35(21), 2206370. https://doi.org/10.1002/adma.202206370
Downloads
Submitted
Accepted
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Journal of Degraded and Mining Lands Management
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Submission of a manuscript implies: that the work described has not been published before (except in the form of an abstract or as part of a published lecture, or thesis) that it is not under consideration for publication elsewhere; that if and when the manuscript is accepted for publication, the authors agree to automatic transfer of the copyright to the publisher.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Scientific Journal by Eko Handayanto is licensed under a Creative Commons Attribution 4.0 International License.
Based on a work at https://ub.ac.id.
Permissions beyond the scope of this license may be available at https://ircmedmind.ub.ac.id/.