Agroforestry as an approach to rehabilitating degraded tropical peatland in Indonesia

Authors

  • Adi Jaya Faculty of Agriculture, University of Palangka Raya, Jl. Yos Sudarso, Palangka Raya 73111, Indonesia
  • Salampak Dohong Faculty of Agriculture, University of Palangka Raya, Jl. Yos Sudarso, Palangka Raya 73111, Indonesia
  • Susan E. Page School of Geography, Geology and the Environment, University of Leicester, United Kingdom
  • Mofit Saptono Faculty of Agriculture, University of Palangka Raya, Jl. Yos Sudarso, Palangka Raya 73111, Indonesia
  • Lilies Supriati Faculty of Agriculture, University of Palangka Raya, Jl. Yos Sudarso, Palangka Raya 73111, Indonesia
  • Shella Winerungan Faculty of Agriculture, University of Palangka Raya, Jl. Yos Sudarso, Palangka Raya 73111, Indonesia
  • Mas Teddy Sutriadi National Agency for Research and Innovation, Bogor, Indonesia
  • Lusia Widiastuti Faculty of Agriculture, University of Palangka Raya, Jl. Yos Sudarso, Palangka Raya 73111, Indonesia

DOI:

https://doi.org/10.15243/jdmlm.2024.112.5453

Keywords:

degraded peat, fire, local communities, restoration

Abstract

Peatland is a unique ecosystem with water saturation; peatland regulates hydrological processes, climate, environmental conditions, and biodiversity. Poor management practises regarding peatlands can lead to land degradation, and peatland degradation typically has negative effects. Recent tropical peatland research in Indonesia has predominantly revolved around the examination of the ecological consequences resulting from various management approaches. There is little study on farmers' agroforestry efforts to preserve and restore degraded peatlands. A comprehensive examination was undertaken to assess a range of facts, information, and scholarly articles pertaining to the practise of agroforestry on peatlands in Indonesia. The primary incentive for farmers to adopt agroforestry systems originates from their recognition of the impending scarcity of trees. By integrating intercrops with cultivated trees, farmers anticipate generating adequate money to fulfil their family's economic requirements. Farmers who choose intensive intercropping practises are motivated by market demand, whereas farmers who do not adopt this approach tend to favour crops that necessitate less rigorous management. The provision of governmental assistance holds significant importance, and there is a pressing need for additional guidance and support. The potential for rehabilitating degraded peatlands by the implementation of agroforestry practises of native tree species is considerable. Their growth patterns contribute to enhanced vegetative coverage, resulting in heightened moisture levels, reduced temperatures, diminished fire hazards, and improved peat soil quality. The relationship between the physiography of the land and the depth of the peat is directly associated with the patterns and components of agroforestry in peatland environments.

References

Agus, C., Azmi, F.F., Widiyatno, Ilfana, Z.R., Wulandari, D., Rachmanadi, D., Harun, M.K. and Yuwati, T.W. 2019. The impact of forest fire on the biodiversity and the soil characteristics of tropical peatland. Handbook of Climate Change and Biodiversity pp.287-303. https://doi.org/10.1007/978-3-319-98681-4_18

Agustiyara, Purnomo, E.P. and Ramdani, R. 2021. Using artificial intelligence techniques in estimating fire hotspots of forest fires. IOP Conference Series: Earth and Environmental Science 717:012019. https://doi.org/10.1088/1755-1315/717/1/012019

Alwi, M. and Hairani, A. 2007. Chemical characteristics of shallow peatlands and their potential for planting chilies and tomatoes. Jurnal Agronomi Indonesia 35(1):36-43 (in Indonesian).

Anda, M., Ritung. S., Suryani, E., Sukarman, Hikmat, M., Yatno, E., Mulyani, A., Subandiono, R.E., Suratman, and Husnain. 2021. Revisiting tropical peatlands in Indonesia: Semi-detailed mapping, extent and depth distribution assessment. Geoderma 402:115235. https://doi.org/10.1016/j.geoderma.2021.115235

Anshari, G.Z., Afifudin, M., Nuriman, M., Gusmayanti, E., Arianie, L., Susana, R., Nusantara, R.W., Sugardjito, J. and Rafiastanto, A. 2010. Drainage and land use impacts on changes in selected peat properties and peat degradation in West Kalimantan Province, Indonesia. Biogeosciences 7(11):3403-3419. https://doi.org/10.5194/bg-7-3403-2010

Anshari, G.Z., Gusmayanti, E. and Novita, N. 2021. The use of subsidence to estimate carbon loss from deforested and drained tropical peatlands in Indonesia. Forests 12(6):732. https://doi.org/10.3390/f12060732

Applegate, G., Freeman, B., Tular, B., Sitadevi, L. and Jessup, T.C. 2022. Application of agroforestry business models to tropical peatland restoration. Ambio 51(4):863-874. https://doi.org/10.1007/s13280-021-01595-x

Aryanti, E., Novlina, H. and Saragih, R. 2016. Macro nutrient content of peat soil with applying Azolla pinata compost at different doses and its effect on the growth of water spinach plants (Ipomea reptans poir). Jurnal Agroteknologi, 6(2), pp.31-38 (in Indonesian). https://doi.org/10.24014/ja.v6i2.2238

Baird, A.J., Low, R., Young, D., Swindles, G.T., Lopez, O.R. and Page, S. 2017. High permeability explains the vulnerability of the carbon stored in drained tropical peatlands. Geophysical Research Letters 44(3):1333-1339. https://doi.org/10.1002/2016GL072245

Ballhorn, U., Siegert, F., Mason, M. and Limin, S., 2009. Derivation of burn scar depths and estimation of carbon emissions with LIDAR in Indonesian peatlands. Proceedings of the National Academy of Sciences 106(50):21213-21218. https://doi.org/10.1073/pnas.0906457106

Blodau, C. 2002. Carbon cycling in peatlands - A review of processes and controls. Environmental Reviews 10:111-134. https://doi.org/10.1139/a02-004

Budiningsih, K. and Effendi, R. 2013. Analysis of the financial feasibility of jelutung (Dyera polyphylla) plantation in Central Kalimantan. Jurnal Penelitian Hutan Tanaman 10(1):17-23 (in Indonesian). https://doi.org/10.20886/jpht.2013.10.1.17-23

Cobb, A.R., Dommain, R., Tan, F., Heng, N.H.E. and Harvey, C.F. 2020. Carbon storage capacity of tropical peatlands in natural and artificial drainage networks. Environmental Research Letters 15:114009. https://doi.org/10.1088/1748-9326/aba867

Cooper, H.V., Evers, S., Aplin, P., Crout, N., Dahalan, M.P.B. and Sjogersten, S. 2020. Greenhouse gas emissions resulting from conversion of peat swamp forest to oil palm plantation. Nature Communications 11(1):407. https://doi.org/10.1038/s41467-020-14298-w

Cooper, H.V., Vane, C.H., Evers, S., Aplin, P., Girkin, N.T. and Sjögersten, S. 2019. From peat swamp forest to oil palm plantations: the stability of tropical peatland carbon. Geoderma 342:109-117. https://doi.org/10.1016/j.geoderma.2019.02.021

Dargie, G.C., Lewis, S.L., Lawson, I.T., Mitchard, E.T., Page, S.E., Bocko, Y.E. and Ifo, S.A. 2017. Age, extent and carbon storage of the central Congo Basin peatland complex. Nature 542(7639):86-90. https://doi.org/10.1038/nature21048

Dariah, A. and Nurzakiah, S. 2014. Peatland water management. In: Nuraida, L.N. and Wihardjaka, A. (eds). Center for Research and Development of Agricultural Land Resources, Agricultural Research and Development Agency (in Indonesian).

Dendang B. 2015. Antagonism test of Trichoderma spp. against Ganoderma sp. which attacks Sengon plants in vitro. Jurnal Penelitian Kehutanan Wallacea 4(2):147-156 (in Indonesian). https://doi.org/10.18330/jwallacea.2015.vol4iss2pp147-156

Dohong, A. 2019. Restoring degraded peatland in Indonesia: the 3R Approach. RSPO Manual on Best Management Practices (BMPs) for Management and Rehabilitation of Peatlands. 2nd Edition, RSPO, Kuala Lumpur.

Dommain, R., Couwenberg, J. and Joosten, H. 2010. Hydrological self-regulation of domed peatlands in Southeast Asia and consequences for conservation and restoration. Mires and Peat 6:1-17

Evans, C.D., Callaghan, N., Jaya, A., Grinham, A., Sjogersten, S., Page, S.E., Harrison, M.E., Kusin, K., Kho L.K., Ledger, M. and Evers, S. 2021. A novel low-cost, high-resolution camera system for measuring peat subsidence and water table dynamics. Frontiers in Environmental Science 9:1-13. https://doi.org/10.3389/fenvs.2021.630752

Evans, C.D., Williamson, J.M., Kacaribu, F., Irawan, D., Suardiwerianto, Y., Hidayat, M.F., Laurén, A. and Page, S.E. 2019. Rates and spatial variability of peat subsidence in Acacia plantation and forest landscapes in Sumatra, Indonesia. Geoderma 338:410-421. https://doi.org/10.1016/j.geoderma.2018.12.028

Evers, S., Yule, C.M., Padfield, R., O'Reilly, P. and Varkkey, H. 2016. Keep wetlands wet: the myth of sustainable development of tropical peatlands - implications for policies and management. Global Change Biology 23(2):534-549. https://doi.org/10.1111/gcb.13422

Firdaus, M.S., Gandaseca, S. and Ahmed, O.H. 2011. Effect of drainage and land clearing on selected peat soil physical properties of secondary peat swamp forest. International Journal of Physical Sciences 6(23):5462-5466. https://doi.org/10.3844/ajessp.2010.402.405

Fransiska, M., Efriani, D.R.D., Bakara, L.K. and Ginting, E.S.S. 2020. Ecological adaptation of transmigration residents in Rasau Jaya Satu village). Pangadereng: Jurnal Hasil Penelitian Ilmu Sosial dan Humaniora 6(1):1-12 (in Indonesian). https://doi.org/10.36869/pjhpish.v6i1.124

Gerwing, T.G., Hawkes, V.C., Gann, G.D. and Murphy, S.D. 2022. Restoration, reclamation, and rehabilitation: on the need for, and positing a definition of ecological reclamation. Restoration Ecology p.e13461. https://doi.org/10.1111/rec.13461

Gesriantuti, N., Trantiati, R. and Badrun, Y. 2016. Diversity of surface insects in ex-fire peatlands and protected forests in Kasang Padang Village, Bonaidarusalam District, Rokan Hulu Regency, Riau Province. Photon: Jurnal Sain dan Kesehatan 7(01):147-155 (in Indonesian). https://doi.org/10.37859/jp.v7i01.569

Giesen, W. and Sari, E.N.N. 2018. Tropical Peatland Restoration Report: The Indonesian Case. Technical Report, Berbak Green Prosperity Partnership, Euroconsult Mott MacDonald Jakarta and Mott MacDonald Arnhem (Netherlands), 82 pp. https://doi.org/10.13140/RG.2.2.30049. 40808

Grega, L. 2002. Price stabilization as a factor of competitiveness of agriculture. Agricultural Economics 48(7):281-284. https://doi.org/10.17221/5321-AGRICECON

Gusnawaty, H.S., Muhammad, T., Leni, T. and Asniah. 2014. Morphological characterization of Trichoderma spp. indigenous to Southeast Sulawesi. Jurnal Agroteknos 4(2):87-93 (in Indonesian). https://doi.org/10.56189/ja.v4i1.204

Handayani, W. and Winara, A. 2020. Diversity of soil macrofauna in several peatland uses. Jurnal Agroforestri Indonesia 3(2):77-88 (in Indonesian). https://doi.org/10.20886/jai.2020.3.2.77-88

Haraguchi, A. 2016. Tropical Peatland Ecosystems (Osaki, M. and Tsuji, N.) 297-311. Springer. https://doi.org/10.1007/978-4-431-55681-7_19

Harun, M.K. 2011. Analysis of Jelutung Development with an Agroforestry System to Restore Degraded Peatlands in Central Kalimantan Province. Master Thesis, Agricultural Institute, Bogor (in Indonesian).

Harun, M.K. 2016. Jelutung Swamp Based Agroforestry: Social, Economic and Environmental Solutions for Peat Land Management. Forda Press, Bogor, 254 pp (in Indonesian).

Harun, M.K. and Yuwati, T.W. 2015. Agroforestry system for rehabilitation of degraded peatland in Central Kalimantan. Journal of Wetlands Environmental Management 3(1):41-46. https://doi.org/10.20527/jwem.v3i1.8

Harun, M.K., Anwar, S., Putri, E.I.K. and Arifin, H.S. 2020. Chemical properties and water level of peat in three types of land use in the physiography of peat domes and back swamps of KHG Kahayan-Sebangau. Jurnal Hutan Tropis 8(3):315-327 (in Indonesian). https://doi.org/10.20527/jht.v8i3.9632

Harun, M.K., Arifin, H.S., Anwar, S., Putri, E.I.K. and Tata, H.L. 2022. Agroforestry approaches in the restoration of peatland landscapes in Central Kalimantan, Indonesia. In Forest Dynamics and Conservation: Science, Innovations and Policies (pp. 331-362). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-19-0071-6_16

Hidayat F, Farrasati, R. and Winarna. 2021. Study of density and diversity of peat soil organisms under oil palm plantation. Jurnal Penelitian Kelapa Sawit 29(2):115-126 (in Indonesian). https://doi.org/10.22302/iopri.jur.jpks.v29i2.146

Holden, J., Evans, M.G., Burt, T.P. and Horton, M. 2006. Impact of land drainage on peatland hydrology. Journal of Environmental Quality 35(5):1764-1778. https://doi.org/10.2134/jeq2005.0477

Hooijer, A., Page, S.E, Jauhiainen, J., Lee, W.A., Lu, X.X., Idris, A. and Anshari, G. 2012. Subsidence and carbon loss in drained tropical peatlands. Biogeosciences 9(3):1053-1071. https://doi.org/10.5194/bg-9-1053-2012

Hooijer, A., Page, S.E., Canadell, J.G., Silvius, M., Kwadijk, J., Wösten, H. and Jauhiainen, J. 2010. Current and future CO2 emissions from drained peatlands in Southeast Asia. Biogeosciences 7:1505-1514. https://doi.org/10.5194/bg-7-1505-2010

Hooijer, A., Page, S.E., Jauhiainen, J., Lee, W.A., Lu, X.X., Idris, A. and Anshari, G. 2012. Subsidence and carbon loss in drained tropical peatlands. Biogeosciences 9:1053-1071. https://doi.org/10.5194/bg-9-1053-2012

Hoscilo, A., Page, S.E., Tansey, K.J. and Rieley, J.O. 2011. Effect of repeated fires on land-cover change on peatland in southern Central Kalimantan, Indonesia, from 1973 to 2005. International Journal of Wildland Fire 20(4):578-588. https://doi.org/10.1071/WF10029

Hu, Y., Fernandez-Anez, N., Smith, T.E. and Rein, G. 2018. Review of emissions from smouldering peat fires and their contribution to regional haze episodes. International Journal of Wildland Fire 27(5):293-312. https://doi.org/10.1071/WF17084

Huijnen, V., Wooster, M.J., Kaiser, J.W., Gaveau, D.L.A., Flemming, J., Parrington, M., Inness, A., Murdiyarso, D., Main, B. and Van Weele, M. 2016. Fire carbon emissions over maritime Southeast Asia in 2015 largest since 1997. Scientific Reports 6:1-8. https://doi.org/10.1038/srep26886

Husnain, H., Sipahutar, I.A., Purnomo, J., Widyanto, H. and Nurhayati, N. 2017. CO2 emissions from tropical peat soil affected by fertilization. Journal of Tropical Soils 22(1):1-9. https://doi.org/10.5400/jts.2017.v22i1.1-9

Idawati, I., Fatchiya, F. and Tjitropranoto, T. 2018. Adaptive capacity of cocoa farmers to climate change. Journal TABARO Agriculture Science 2(1):178-190 (in Indonesian). https://doi.org/10.35914/tabaro.v2i1.112

Itta, D., Asysifa, A. and Trisnu, S. 2015. Peatland characteristics and agroforestry patterns in Kalampangan Village, Palangka Raya City, Central Kalimantan. Proceedings of National Seminar on Agroforestry 2015. Agroforestry Technology Research and Development Center (in Indonesian).

Jaenicke, J., Wösten, H., Budiman, A. and Siegert, F. 2010. Planning hydrological restoration of peatlands in Indonesia to mitigate carbon dioxide emissions. Mitigation and Adaptation Strategies for Global Change 15:223-239. https://doi.org/10.1007/s11027-010-9214-5

Jauhiainen, J., Limin, S., Silvennoinen, H. and Vasander, H. 2008. Carbon dioxide and methane fluxes in drained tropical peat before and after hydrological restoration. Ecology 89(12):3503-3514. https://doi.org/10.1890/07-2038.1

Jaya, A., Antang, E.U., Djaya, A.A. and Gunawan, H. 2021. Agroforestry farming system as peatland restoration efforts in Central Kalimantan, Indonesia. IOP Conference Series: Earth and Environmental Science 694:012016. https://doi.org/10.1088/1755-1315/694/1/012016

Jaya, A., Elia, A., Antang, E.U., Octora, M., Ichriani, G.I., Dohong, S. and Sulistiyanto, Y. 2022. A study of agroforestry farming for tropical peatland conservation and rehabilitation in Central Kalimantan, Indonesia. Mires and Peat 28:22:34, https://doi.org/10.19189/MaP.2021.OMB.StA.2368.

Jaya, A., Sulastiyanto, Y., Jagau, Y., Rieley, J.O. and Artiningsih, T. 2002. Utilization of deep tropical peatland for agriculture in Central Kalimantan, Indonesia. International Symposium on Tropical Peatlands, Jakarta (Indonesia), 22-23 August 2002.

Joosten, H. 2015. Peatlands, climate change mitigation and biodiversity conservation: An issue brief on the importance of peatlands for carbon and biodiversity conservation and the role of drained peatlands as greenhouse gas emission hotspots (Vol. 2015727). Nordic Council of Ministers. https://doi.org/10.6027/ANP2015-727

Jose, S. 2009. Agroforestry for ecosystem services and environmental benefits: an overview. Agroforestry Systems 76(1):1-10. https://doi.org/10.1007/s10457-009-9229-7

Kallio, M.H., Kanninen, M. and Rohadi, D. 2011. Farmers'tree planting activity in Indonesia - Case studies in the Provinces of Central Java, Riau, and South Kalimantan. Forests, Trees and Livelihoods 20(2-3):191-209. https://doi.org/10.1080/14728028.2011.9756706

Kelly, T.J., Baird, A.J., Roucoux, K.H., Baker, T.R., Honorio Coronado, E.N., Ríos, M. and Lawson, I.T. 2014. The high hydraulic conductivity of three wooded tropical peat swamps in northeast Peru: measurements and implications for hydrological function. Hydrological Processes 28(9):3373-3387. https://doi.org/10.1002/hyp.9884

Khasanah, N.M. and van Noordwijk, M. 2019. Subsidence and carbon dioxide emissions in a smallholder peatland mosaic in Sumatra, Indonesia. Mitigation and Adaptation Strategies for Global Change 24(1):147-163. https://doi.org/10.1007/s11027-018-9803-2

Kholifah, U.N., Wulandari, C., Santoso, T. and Kaskoyo, H. 2017. Contribution of agroforestry to farmers' income in Sumber Agung Village, Kemiling District, Bandar Lampung City. Jurnal Sylva Lestari 5(3):38-47 (in Indonesian). https://doi.org/10.23960/jsl3539-47

Jose, S. 2009. Agroforestry for ecosystem services and environmental benefits: an overview. Agroforestry Systems 76(1):1-10. https://doi.org/10.1007/s10457-009-9229-7

Kallio, M.H., Kanninen, M. and Rohadi, D. 2011. Farmers'tree planting activity in Indonesia - Case studies in the Provinces of Central Java, Riau, and South Kalimantan. Forests, Trees and Livelihoods 20(2-3):191-209. https://doi.org/10.1080/14728028.2011.9756706

Kelly, T.J., Baird, A.J., Roucoux, K.H., Baker, T.R., Honorio Coronado, E.N., Ríos, M. and Lawson, I.T. 2014. The high hydraulic conductivity of three wooded tropical peat swamps in northeast Peru: measurements and implications for hydrological function. Hydrological Processes 28(9):3373-3387. https://doi.org/10.1002/hyp.9884

Khasanah, N.M. and van Noordwijk, M. 2019. Subsidence and carbon dioxide emissions in a smallholder peatland mosaic in Sumatra, Indonesia. Mitigation and Adaptation Strategies for Global Change 24(1):147-163. https://doi.org/10.1007/s11027-018-9803-2

Kholifah, U.N., Wulandari, C., Santoso, T. and Kaskoyo, H. 2017. Contribution of agroforestry to farmers' income in Sumber Agung Village, Kemiling District, Bandar Lampung City. Jurnal Sylva Lestari 5(3):38-47 (in Indonesian). https://doi.org/10.23960/jsl3539-47

Könönen, M., Jauhiainen, J., Laiho, R., Kusin, K. and Vasander, H. 2015. Physical and chemical properties of tropical peat under stabilised land uses. Mires and Peat 16(8):1-13.

Kurnianto, S., Selker, J., Kauffman, J.B., Murdiyarso, D. and Peterson, J.T. 2019. The influence of land-cover changes on the variability of saturated hydraulic conductivity in tropical peatlands. Mitigation and Adaptation Strategies for Global Change 24:535-555. https://doi.org/10.1007/s11027-018-9802-3

Könönen, M., Jauhiainen, J., Laiho, R., Kusin, K. and Vasander, H. 2015. Physical and chemical properties of tropical peat under stabilised land uses. Mires and Peat 16(8):1-13.

Kurnianto, S., Selker, J., Kauffman, J.B., Murdiyarso, D. and Peterson, J.T. 2019. The influence of land-cover changes on the variability of saturated hydraulic conductivity in tropical peatlands. Mitigation and Adaptation Strategies for Global Change 24:535-555. https://doi.org/10.1007/s11027-018-9802-3

Könönen, M., Jauhiainen, J., Laiho, R., Kusin, K. and Vasander, H. 2015. Physical and chemical properties of tropical peat under stabilised land uses. Mires and Peat 16(8):1-13.

Kurnianto, S., Selker, J., Kauffman, J.B., Murdiyarso, D. and Peterson, J.T. 2019. The influence of land-cover changes on the variability of saturated hydraulic conductivity in tropical peatlands. Mitigation and Adaptation Strategies for Global Change 24:535-555. https://doi.org/10.1007/s11027-018-9802-3

Lampela, M., Jauhiainen, J. and Vasander, H. 2014. Surface peat structure and chemistry in a tropical peat swamp forest. Plant and Soil 382:329-347. https://doi.org/10.1007/s11104-014-2187-5

Laurén, A., Palviainen, M., Page, S., Evans, C., Urzainki, I. and Hökkä, H. 2021. Nutrient balance as a tool for maintaining yield and mitigating environmental impacts of Acacia plantation in drained tropical peatland - description of plantation simulator. Forests 12(3):312. https://doi.org/10.3390/f12030312

Maftu'ah, E., Susilawati, A. and Sulaeman, Y. 2021. Agroforestry for restoration of degraded peatlands. E3S Web of Conferences 305: 03001. https://doi.org/10.1051/e3sconf/202130503001

Mamat, H.S. and Noor, M. 2019. Transmigration Development Strategy in Tidal Swamp Land: Lessons Learned from Old Patterns). Policy Brief 2019, Swamplands Support Food Sovereignty 57-64 (in Indonesian).

Downloads

Submitted

04-10-2023

Accepted

06-12-2023

Published

01-01-2024

How to Cite

Jaya, A., Dohong, S., Page, S. E., Saptono, M., Supriati, L., Winerungan, S., Sutriadi, M. T., & Widiastuti , L. (2024). Agroforestry as an approach to rehabilitating degraded tropical peatland in Indonesia. Journal of Degraded and Mining Lands Management, 11(2), 5453–5474. https://doi.org/10.15243/jdmlm.2024.112.5453

Issue

Section

Review