Characteristics, stability, and utilization of sulfuric natural water from Sebau East Lombok in reducing dissolved metals

Authors

  • Surya Hadi Study Program of Chemistry, Faculty of Mathematics and Natural Sciences, University of Mataram
  • Teguh Rifandi School of Environment and Sciences, Griffith University
  • Bakti Abdillah School of Earth and Environmental Sciences, Faculty of Science, The University of Queensland
  • Mozaik Al Qharomi Study Program of Physics, Faculty of Mathematics and Natural Sciences, University of Mataram
  • Lalu Riza Mahendra Study Program of Chemistry, Faculty of Mathematics and Natural Sciences, University of Mataram
  • L M Riza Rahman Hidayat Study Program of Chemistry, Faculty of Mathematics and Natural Sciences, University of Mataram
  • Dina Asnawati Study Program of Chemistry, Faculty of Mathematics and Natural Sciences, University of Mataram
  • Murniati Murniati Study Program of Chemistry, Faculty of Mathematics and Natural Sciences, University of Mataram

DOI:

https://doi.org/10.15243/jdmlm.2023.103.4559

Keywords:

Sulfuric Water, Dissolve Metal, Sulfidation

Abstract

This paper aims to characterize and test the stability of sulfuric natural water (SNW) from Sebau East Lombok as a sulfidation agent for several dissolved metals (Mn, Cu, Pb and Fe). The parameters used for SNW characterization are temperature, pH, DO, BOD, COD, TSS, and TDS. The sample was divided into two categories, namely the sample with preservation treatment and the sample without preservation, to study the stability of SNW. The SNW stability was determined by observing the SNW parameters in both samples at a storage time of 5, 10, 15 and 20 days and reacting them with dissolved metals. The SNW with preservation had reduced sulphide levels from day 1 to day 20, ranging from 59.24 mg/L to 17.70 mg/L, whereas the sample without preservation had decreased sulphide concentration from 52.46 mg/L to 9.56 mg/L. Furthermore, the SNW with preservation has a relatively superior metal reduction ratio than the sample without preservation. The maximum value of the deposition ratio for Mn metal was obtained on the fifth day with 57.60%, 83.45% for Cu, and 91.87% for Pb. This trend is not applicable for Fe, whereas the highest reduction (87.23%) was obtained on the the15th day's storage.

References

Anami, W.R., Maslahat, M. and Arrisujaya, D. 2020. Laboratory liquid waste heavy metal precipitation using sodium sulfide from natural sulfur. Sains Natural 10(2):61-70, doi:10.31938/jsn.v10i2.283 (in Indonesian).

Asmara, Y.P. 2018. The roles of H2S gas in behavior of carbon steel corrosion in oil and gas environment: a review. Jurnal Teknik Mesin 7(1):38-43, doi:10.22441/jtm.v7i1.2279.

Benatti, C.T., Tavares, C.R.G. Lenzi, E. 2009. Sulfate removal from waste chemicals by precipitation. Journal of Environmental Management 90(1):504-511, doi:10.1016/j.jenvman.2007.12.006.

Bwapwa, J.K., Jaiyeola, A.T. Chetty, R. 2017. Bioremediation of acid mine drainage using algae strains: A review. South African Journal of Chemical Engineering 24:62-70, doi:10.1016/j.sajce.2017.06.005.

Chen, G., Ye, Y., Yao, N., Hu, N., Zhang, J. and Huang, Y. 2021. A critical review of prevention, treatment, reuse, and resource recovery from acid mine drainage. Journal of Cleaner Production 329:129666, doi:10.1016/j.jclepro.2021.129666.

Di, J., Ma, Y., Wang, M., Gao, Z., Xu, X., Dong, Y., Fu, S. and Li, H. 2022. Dynamic experiments of acid mine drainage with Rhodopseudomonas spheroides activated lignite immobilized sulfate-reducing bacteria particles treatment. Scientific Reports 12(1):1-13, doi:10.1038/s41598-022-12897-9.

Du, T., Bogush, A., Edwards, P., Stanley, P., Lombardi, A.T. and Campos, L.C. 2022. Bioaccumulation of metals by algae from acid mine drainage: a case study of Frongoch Mine (UK). Environmental Science and Pollution Research 29(21):32261-32270, doi:10.1007/s11356-022-19604-1.

Fadzry, N., Hidayat, H. and Eniati, E. 2020. Analysis of COD, BOD and DO at the wastewater treatment plant (WWTP) at the Center for Urban Wastewater and Drinking Water Infrastructure, Yogyakarta PUP-ESDM Service. Indonesian Journal of Chemical Research 5(2):80-89, doi:10.20885/ijcer.vol5.iss2.art5 (in Indonesian).

Fellah, M.F. 2016. Adsorption of hydrogen sulfide as initial step of H2S removal: A DFT study on metal exchanged ZSM-12 clusters. Fuel Processing Technology 14:191-196, doi:10.1016/j.fuproc.2016.01.003.

Hadi, S., Asnawati, D., Kamali, S.R., Zulkarnaen, Z., Syaifuddin, S. and Hizmi, S. 2018. Investigation of sulfidic natural water in Sebau Lombok Island to remove dissolved copper (Cu2+) in acid mine drainage. AIP Conference Proceedings 2023(1):20083, doi:10.1063/1.5064080.

Hadi, S., Suliartini, N.M.S., Kurniawati, L. , and Hizmi, S. 2018. Integrating treatment of neutralization with sulfidic natural water (SNW) to capture dissolved copper (Cu2+) from acid mine drainage (AMD) at Batu Hijau Site, Sumbawa Island Indonesia. Indonesian Journal of Chemistry 18(4):647-655, doi:10.22146/ijc.28223.

Kefeni, K.K., Msagati, T.A. and Mamba, B.B. 2017. Acid mine drainage: Prevention, treatment options, and resource recovery: A review. Journal of Cleaner Production 151:475-493, doi:10.1016/j.jclepro.2017.03.082.

Kusumaningtyas, D.I. and Sumarno, D. 2016. Spectrophotometric analysis of sulfate concentration in Lake Beratan and Lake Batur, Bali Province. Buletin Teknik Litkayasa Sumber Daya dan Penangkapan 11(1):25-31 (in Indonesian).

Kweon, Y., Park, J.Y., Kim, Y.J., Lee, Y.S. and Jeong, J.M. 2020. Imaging hydrogen sulfide in hypoxic tissue with [99mTc] Tc-gluconate. Molecules 26(1):96, doi:10.3390/molecules26010096.

Li, Q. and Lancaster Jr, J.R. 2013. Chemical foundations of hydrogen sulfide biology. Nitric Oxide 35:21-34, doi:10.1016/j.niox.2013.07.001.

Masindi, V., Foteinis, S., Renforth, P., Ndiritu, J., Maree, J. P., Tekere, M. and Chatzisymeon, E. 2022. Challenges and avenues for acid mine drainage treatment, beneficiation, and valorisation in circular economy: A review. Ecological Engineering 183:106740, doi:10.1016/j.ecoleng.2022.106740.

Matta, G., Kumar, R., Kumar, A. and Kumar, A. 2014. Effect of industrial effluent on ground water quality with special reference to DO, BOD and COD. Journal of Sustainable Environmental Research 3(2):183-186.

Naidu, G., Ryu, S., Thiruvenkatachari, R., Choi, Y., Jeong, S. and Vigneswaran, S. 2019. A critical review on remediation, reuse, and resource recovery from acid mine drainage. Environmental Pollution 247:1110-1124, doi:10.1016/j.envpol.2019.01.085.

Nugraha, W.D., Sarminingsih, A. and Alfisya, B. 2020. The study of self purification capacity based on biological oxygen demand (BOD) and dissolved oxygen (DO) parameters. IOP Conference Series: Earth and Environmental Science 448(1):12105, doi:10.1088/1755-1315/448/1/012105.

Park, I., Tabelin, C.B., Jeon, S., Li, X., Seno, K., Ito, M. and Hiroyoshi, N. 2019. A review of recent strategies for acid mine drainage prevention and mine tailings recycling. Chemosphere 219:588-606, doi:10.1016/j.chemosphere.2018.11.053.

Pohl, A. 2020. Removal of heavy metal ions from water and wastewaters by sulfur-containing precipitation agents. Water, Air & Soil Pollution, 231(10):1-17, doi:10.1007/s11270-020-04863-w.

Pratinthong, N., Sangchan, S., Chimupala, Y. and Kijjanapanich, P. 2021. Sulfate removal from lignite coal mine drainage in Thailand using ettringite precipitation. Chemosphere 285:131357, doi:10.1016/j.chemosphere.2021.131357.

Prokkola, H., Nurmesniemi, E.T. and Lassi, U. 2020. Removal of metals by sulphide precipitation using Na2S and HS−-solution. ChemEngineering 4(3):51, doi:10.3390/chemengineering4030051.

Qureshi, A., Maurice, C. and Öhlander, B. 2016. Potential of coal mine waste rock for generating acid mine drainage. Journal of Geochemical Exploration 160:44-54, doi:10.1016/j.gexplo.2015.10.014.

Rinawati., Hidayat, D., Suprianto, R. and Dewi, P.S. 2016. Determination of solids content (total dissolved solids and total suspended solids) in the waters of Lampung Bay. Analit: Analytical and Environmental Chemistry, 1(1):36-45 (in Indonesian).

Saidy, A.R., Priatmadi, B.J. Septiana, M. ans Mulyawan, R. 2021. Improvement of pH and reduction of heavy metal concentrations in acid mine. Journal of Hunan University Natural Sciences 48(10):379-388.

Skousen, J., Zipper, C.E., Rose, A., Ziemkiewicz, P.F., Nairn, R., McDonald, L.M. and Kleinmann, R.L. 2017. Review of passive systems for acid mine drainage treatment. Mine Water and the Environment 36(1):133-153, doi:10.1007/s10230-016-0417-1.

Skousen, J.G., Ziemkiewicz, P.F. and McDonald, L.M. 2019. Acid mine drainage formation, control and treatment: Approaches and strategies. The Extractive Industries and Society 6(1):241-249, doi:10.1016/j.exis.2018.09.008

Sun, R., Li, Y., Lin, N., Ou, C., Wang, X., Zhang, L. and Jiang, F. 2020. Removal of heavy metals using a novel sulfidogenic AMD treatment system with sulfur reduction: Configuration, performance, critical parameters and economic analysis. Environment International 136:105457, doi:10.1016/j.envint.2019.105457.

Thomas, G., Sheridan, C. and Holm, P.E. 2022. A critical review of phytoremediation for acid mine drainage-impacted environments. Science of The Total Environment 811:152230, doi:10.1016/j.scitotenv.2021.152230.

Tu, Z., Wu, Q., He, H., Zhou, S., Liu, J., He, H., Liu, C., Dang, Z. and Reinfelder, J.R. 2022. Reduction of acid mine drainage by passivation of pyrite surfaces: A review. Science of The Total Environment 832:155116, doi:10.1016/j.scitotenv.2022.155116.

Utami, U.B.L., Susanto, H. and Cahyono, B. 2020. Neutralization acid mine drainage (AMD) using NaOH at PT. Jorong Barutama Grestone, Tanah Laut, South Borneo. Indonesian Journal of Chemical Analysis 3(1):17-21, doi:10.20885/ijca.vol3.iss1.art3.

Wibowo, Y. G., Fadhilah, R., Syarifuddin, H., Maryani, A.T. and Putri, I.A. 2021. A critical review of acid mine drainage treatment. Jurnal Presipitasi: Media Komunikasi dan Pengembangan Teknik Lingkungan (3):524-535, doi:10.14710/presipitasi.v18i3.524-535.

Wibowo, Y.G., Muhammad, D., Naswir, M. and Muljadi, B.P. 2020. Low-cost modified reactor to produce biochar and clamshell as alternative materials from acid mine drainage problem solving. IOP Conference Series: Earth and Environmental Science 483(1):012031, doi:10.1088/1757-899X/1073/1/012031.

Zhang, K., Bao, W., Chang, L. and Wang, H. 2019. A review of recent research on Bunsen reaction for hydrogen production via S–I water and H2S splitting cycles. Journal of Energy Chemistry 46-58, doi:10.1016/j.jechem.2018.08.015.

Zhang, M. 2011. Adsorption study of Pb (II), Cu (II) and Zn (II) from simulated acid mine drainage using dairy manure compost. Chemical Engineering Journal 172(1):361-368, doi:10.1016/j.cej.2011.06.017.

Downloads

Submitted

20-11-2022

Accepted

28-01-2023

Published

01-04-2023

How to Cite

Hadi, S., Rifandi, T., Abdillah, B., Qharomi, M. A., Mahendra, L. R., Hidayat, L. M. R. R., Asnawati, D., & Murniati, M. (2023). Characteristics, stability, and utilization of sulfuric natural water from Sebau East Lombok in reducing dissolved metals. Journal of Degraded and Mining Lands Management, 10(3), 4559–4566. https://doi.org/10.15243/jdmlm.2023.103.4559

Issue

Section

Research Article