Aquifer characteristics and groundwater potential for domestic requirements in Kediri Regency, Indonesia

Authors

  • Setyawan Purnama Department of Environmental Geography, Faculty of Geography, Universitas Gadjah Mada
  • Ahmad Cahyadi Department of Environmental Geography, Faculty of Geography, Universitas Gadjah Mada
  • Andung Bayu Sekaranom Department of Environmental Geography, Faculty of Geography, Universitas Gadjah Mada
  • Erik Febriarta CV Palawa Karya
  • Anugrah Jorgi Firmansyah Department of Environmental Geography, Faculty of Geography, Universitas Gadjah Mada
  • Indra Agus Riyanto Department of Development Geography, Faculty of Geography, Universitas Gadjah Mada

DOI:

https://doi.org/10.15243/jdmlm.2023.102.4081

Keywords:

aquifer characteristic, domestic requirement, groundwater potential, Kediri Regency

Abstract

Like other natural resources, groundwater is also being exploited at an increasing rate, especially for domestic requirements. Groundwater is preferred as a domestic water source because of its continuous availability and relatively good quality. Unfortunately, not all places have sufficient groundwater availability of good quality. The purpose of this study was to analyze the characteristics of the aquifer in the study area and evaluate its groundwater potential for domestic needs. Aquifer characteristics were determined based on geological and geomorphological conditions, while groundwater potential was calculated using a static approach. The results showed that the characteristics of the aquifers in Kediri Regency are various. In the eastern and central parts of the study area, the characteristics of the aquifer can be in the form of unconfined aquifers with high productivity. In the western part, most of them have non-aquifer material, so it is difficult to find groundwater. Groundwater generally fills joints and diaclase formed in andesitic lava with low discharge. Although the conditions of the aquifer are various, in general, the potential for groundwater in Kediri Regency can still support its requirements because the potential for groundwater in Kediri Regency is 71,121,313,394 m3, while domestic requirements is 52,348,490 m3/year.

References

Abdullahi, M.G., Kamarudin, M.K.A., Toriman, M.E., Gasim, M.B., Endut, A. and Garba, I. 2016. Assessment of natural groundwater recharge in Terengganu, Malaysia. International Journal on Advanced Science, Engineering and Information Technology 6(5):781-786, doi:10.18517/ijaseit.6.5.999.

Baud, B., Lachassagne, P., Jourde, H., De Montety, V., Fadillah, A., Dörfliger, N., Hendrayana, H. And Rachmansyah, A. 2021. Preliminary conceptual model of the Arjuno Welirang hydrogeological system, and comparison with the Bromo Tengger: An illustration of the hydrogeological systems diversity in volcanic areas. IOP Conference Series: Earth and Environmental Science 851(1):012016, doi:10.1088/1755-1315/851/1/012016.

Belkhiri, L., Tiri, A. and Mouni, L. 2020. Spatial distribution of the groundwater quality using kriging and Co-kriging interpolations. Groundwater for Sustainable Development 11:100473 doi:10.1016/j.gsd.2020.100473.

Berg, M., Stengel, C., Trang, P.T.K., Viet, P.H., Sampson, M.L., Leng, M., Samreth, S. and Fredericks, D. 2007. Magnitude of arsenic pollution in the Mekong and Red River Deltas—Cambodia and Vietnam. Science of the Total Environment 372(2-3):413-425, doi:10.1016/j.scitotenv.2006.09.010.

Brotopuspito, K.S. and Wahyudi. 2007. Eruption of Kelud Volcanic and B-rated Earthquakes in the vicinity. Berkala MIPA 17(3):47-56 (in Indonesian).

Cahyadi, A., Agniy, R.F., Khakhim, N., Purnama, S., Bachtiar, I.Y. and Prihartanto, W.J. 2019. The hydrogeological mapping of the southwestern part of Serang Regency, Banten, Indonesia. E3S Web of Conferences 76:02006.

Davie, T. and Quinn, N.W. 2019. Fundamentals of Hydrology. Routledge, doi:10.4324/9780203798942.

Dumont, M., Mohammad, F., Guerin, R., Lachassagne, P., Nugagraha, B., Brocard, G., Alfadli, M., Fadillah, A., Iskandarsyah, T., Satrya A.M., Dorflinger, N. and V. Plagnes. 2021. combining electrical sounding and tomography to explain artesian aquifer spring in andesitic volcanic setting. NSG2021 1st Conference on Hydrogeophysics 1-5.

Fetter, C.W. 2018. Applied Hydrogeology. Waveland Press.

Genet, M. 2017. Groundwater flow direction, recharge and discharge zones identification in lower Gidabo Catchment, Rift Valley Basin, Ethiopia. Journal of Environment and Earth Science 7(2):32–39.

Giberti, G., Yven, B., Zamora, M. and Vanorio, T. 2006. Database on laboratory measured data on physical properties of rocks of Campi Flegrei volcanic area (Italy). In: Zollo, A., Capuano, P. and Corciulo, M. (eds), Geophysical Exploration of the Campi Flegrei (southern Italy) caldera interiors: Data, Methods and Results, Vol 1, pp 179–192. Publisher: DoppiaVoce ed, Napoli, Naples, Italy.

Hemmings, B., Whitaker, F., Gottsmann, J. and Hughes, A. 2015. Hydrogeology of Montserrat, review and new insights. Journal of Hydrology: Regional Studies 3:1–30.

Hendrayana, H., Nuha, A., Riyanto, I.A. and Aprimanto, B. 2021b. Study of groundwater level changes in the Yogyakarta-Sleman Groundwater Basin. Majalah Geograï¬ Indonesia 35(1):30-44 (in Indonesian).

Hendrayana, H., Riyanto, I. A. and Nuha, A. 2020. Groundwater utilization rate in the Yogyakarta-Sleman Groundwater Basin. Geodika: Jurnal Kajian Ilmu dan Pendidikan Geografi 4(2):127-137 (in Indonesian).

Hendrayana, H., Riyanto, I. A., Nuha, A. and Lisan, A. R. an K. 2021a. Unregistered artesian well management in Pasuruan, Indonesia: an attempt to protect groundwater resources. Indonesian Journal of Geography 53(3): 453-464.

Isa, L.O.S. and Purnama, I.L.S. 2021. Aquifer system and groundwater potency in the coastal area of Kretek, Bantul Regency, Indonesia. E3S Web of Conferences 325:8001, doi:10.1051/e3sconf/202132508001.

Islam, M.B., Firoz, A.B.M., Foglia, L., Marandi, A., Khan, A.R., Schüth, C. and Ribbe, L. 2017. A regional groundwater-flow model for sustainable groundwater-resource management in the south Asian megacity of Dhaka, Bangladesh. Hydrogeology Journal 25(3):617-637, doi:10.1007/s10040-016-1526-4,.

Jasim, A., Hemmings, B., Mayer, K. and Scheu, B. 2019. Groundwater flow and volcanic unrest. In: Gottsmann, J., Neuberg, J. and Scheu, B (eds), Volcanic Unrest: From Science to Society. Cham, Switzerland: Springer Nature Switzerland AG.

Kadam, A.K. 2020. Identification of groundwater recharge potential zones using Fuzzy logic and geospatial techniques zones in a semi-arid hard-rock aquifer in Maharashtra, India. E-Journal of Geohydrology 1(1):60-70.

Kalhor, K., Ghasemizadeh, R., Rajic, L. and Alshawabkeh, A. 2019. Assessment of groundwater quality and remediation in karst aquifers: A review. Groundwater for Sustainable Development 8:104-121, doi:10.1016/j.gsd.2018.10.004.

Khan, A. and Qureshi, F.R. 2018. Groundwater quality assessment through water quality index (WQI) in New Karachi Town, Karachi, Pakistan. Asian Journal of Water, Environment and Pollution 15(1):41-46, doi:10.3233/AJW-180004.

Konikow, L.F. 2015. Long-term groundwater depletion in the United States. Groundwater 53(1):2-9, doi:10.1111/gwat.12306.

Kura, N.U., Ramli, M.F., Sulaiman, W.N.A., Ibrahim, S., Aris, A.Z. and Mustapha, A. 2013. Evaluation of factors influencing the groundwater chemistry in a small tropical island of Malaysia. International Journal of Environmental Research and Public Health 10(5):1861-1881, doi:10.3390/ijerph10051861.

Kusumayudha, S.B., Pratiknyo, P., Riswandi, H. and Muryani, E. 2021. Hydrogeological risk assessment for groundwater conservation in the northeastern slope area of Mount Arjuno, Pasuruan Regency, East Java, Indonesia. Indonesian Journal of Geography 53(1):20-29.

Nugrahaeni, S.B., Purnama, I.L.S. and Primacintya, V.A. 2021. Evaluation of groundwater usage in relationship to groundwater vulnerability to sea water intrusion in Cilacap Coastal. E3S Web of Conferences 325:8004, doi:10.1051/e3sconf/202132508004.

Patra, S., Mishra, P. and Mahapatra, S.C. 2018. Delineation of groundwater potential zone for sustainable development: A case study from Ganga Alluvial Plain covering Hooghly district of India using remote sensing, geographic information system and analytic hierarchy process. Journal of Cleaner Production 172:2485-2502, doi:10.1016/j.jclepro.2017.11.161.

Petrov, V.A., Poluektov, V.V., Zharikov, A.V., Velichkin, V.I., Nasimov, R.M., Diaur, N.I., Terentiev, V.A., Shmonov, V.M., and Vitovtova, V.M. 2005. Deformation of metavolcanics in the Karachay Lake area, Southern Urals: petrophysical and mineral-chemical aspects. Geological Society of London, Special Publication 240: 307-322.

Purnama, I.L.S. 2019. Spatial distribution of dominant ions in the groundwater in Banyumudal Groundwater Basin, Central Java, Indonesia. E3S Web of Conferences 76:2005, doi:10.1051/e3sconf/20197602005.

Purnama, I.L.S. 2020. Water management model in Bodri River Basin, Province of Central Java. IOP Conference Series: Earth and Environmental Science 451(1):12085, doi:10.1088/1755-1315/451/1/012085.

Purnama, I.L.S., Rahmawati, L., Primacintya, V.A. and Febriarta, E. 2021. The influence of aquifer material on groundwater potency in Ngawi Regency. E3S Web of Conferences 325:8011, doi:10.1051/e3sconf/202132508011.

Putra, D.P.E., Iqbal, M., Hendrayana, H. and Putranto, T.T. 2015. Assessment of optimum yield of groundwater withdrawal in Yogyakarta City, Indonesia. Journal of Applied Geology 5(1):41-49.

Rouwet, D., Constantinescu, R. and Sandri, L. 2019. Deterministic versus probabilistic volcano monitoring: not “or†but “and.†In Advances in Volcanology, doi:10.1007/11157_2017_8.

Rushton, K.R. 2004. Groundwater Hydrology: Conceptual and Computational Models. John Wiley & Sons, doi:10.1002/0470871660.

Salamah, S.D., Purnama, I.L.S. and Primacintya, V.A. 2020. Groundwater potency for domestic demand in Banguntapan District, Bantul Regency. E3S Web of Conferences 200:2011, doi:10.1051/e3sconf/202020002017.

Santosa, S. and Atmawinata, S. 1992. Geological Map of the Kediri quadrangle, Java, Scale 1:100000 (in Indonesian).

Selles, A. 2014. Multi-disciplinary study on the hydrogeological behaviour of the eastern flank of the Merapi Volcano, Central Java, Indonesia. [Université Montpellier], https://hal.archives-ouvertes.fr/tel-01113604

Selles, A., Deffontaines, B., Hendrayana, H. and Violette, S. 2015. The eastern flank of the Merapi Volcano (Central Java, Indonesia): Architecture and implications of volcaniclastic deposits. Journal of Asian Earth Sciences 108:33-47.

Senanayake, I.P., Dissanayake, D., Mayadunna, B.B. and Weerasekera, W.L. 2016. An approach to delineate groundwater recharge potential sites in Ambalantota, Sri Lanka using GIS techniques. Geoscience Frontiers 7(1):115-124, doi:10.1016/j.gsf.2015.03.002.

Shah, T., Bruke, J., Vullholth, K., Angelica, M., Custodio, E., Daibes, F. van Dijk, J.D.H., Giordano, M., Girman, J., van der Gun, J., Kendy, E., Kijne, J., llamas, R., Masiyandama, M., Margat, J., Marin, L., Peck, J., Rozelle, S., Sharma, B., Vincent, L.F. and Wang, J. 2007. Groundwater: a global assessment of scale and significance. In: Molden, D. (ed), Water for Food Water for Life: A Comprehensive Assessment of Water Management in Agriculture. Earthscan Publisher, London, pp 395-423.

Siebert, S., Burke, J., Faures, J.-M., Frenken, K., Hoogeveen, J., Döll, P. and Portmann, F.T. 2010. Groundwater use for irrigation–a global inventory. Hydrology and Earth System Sciences 14(10):1863-1880, doi:10.5194/hess-14-1863-2010.

Subekti, S. 2012. Study on identification of water needs and potentials for drinking water in Pasuruan Regency. Momentum 8(2):43-51 (in Indonesian).

Thyagarajan, L.P., Jeyanthi, J. and Kavitha, D. 2021. Vulnerability analysis of the groundwater quality around Vellalore-Kurichi landfill region in Coimbatore. Environmental Chemistry and Ecotoxicology 3:125-130, doi:10.1016/j.enceco.2020.12.002.

Todd, D.K. and Mays, L.W. 2005. Groundwater Hydrology. New York: John Wiley & Sons.

Toulier, A., Baud, B., de Montety, V., Lachassagne, P., Leonardi, V., Pistre, S., Dautria, J. M., Hendrayana, H., Miftakhul F.M.H., Satrya, M.A., Beon, O. and Jourde, H. 2019a. Multidisciplinary study with quantitative analysis of isotopic data for the assessment of recharge and functioning of volcanic aquifers: Case of Bromo-Tengger volcano, Indonesia. Journal of Hydrology: Regional Studies 26(April):100634.

Toulier, A. 2019b. Multidisciplinary study for the characterization of volcanic aquifers hydrogeological functioning : case of Bromo-Tengger volcano (East Java, Indonesia) [Université Montpellier]. In Thèse. https://tel.archives-ouvertes.fr/tel-02488883.

Vijakanth, V., Sivakumar, S.S. and Ratnaweera, H.C. 2017. Availability study of groundwater in Jaffna Peninsula of Northern Sri Lanka. International Journal of Scientific & Engineering Research 8:1563-1567, doi:10.14299/ijser.2017.01.023.

Wandari, K.A., Purnama, I.L.S. and Primacintya, V.A. 2020. Groundwater vulnerability study using SINTACS method in Banguntapan district, Bantul Regency. E3S Web of Conferences 200:2013, doi:10.1051/e3sconf/202020002012.

Waspodo, R.S.B. 2015. The exploration potential of groundwater in industrial estate bottled mineral water Cemplang, Bogor. Jurnal Keteknikan Pertanian 3(2):1-8 (in Indonesian).

Wibowo, E.A., Santoso, R., Waspodo, B. and Saptomo, S.K. 2019. Analysis of potential unconfined aquifer and safe yield groundwater exploitation in Bogor. International Journal of Applied Engineering Research 14(16):3508-3519.

Zaennudin, A., Primulyana, S. and Siregar, D. 2013. The Kelud eruption at 690 ± 110 years ago was a very powerful eruption and had a huge impact on the Majapahit Kingdom. Jurnal Lingkungan dan Bencana Geologi, 4(2):117-133 (in Indonesian).

Zhou, Y. and Li, W. 2011. A review of regional groundwater flow modeling. Geoscience Frontiers 2(2):205-214, doi:10.1016/j.gsf.2011.03.003.

Downloads

Submitted

06-07-2022

Accepted

11-10-2022

Published

01-01-2023

How to Cite

Purnama, S., Cahyadi, A., Sekaranom, A. B., Febriarta, E., Firmansyah, A. J., & Riyanto, I. A. (2023). Aquifer characteristics and groundwater potential for domestic requirements in Kediri Regency, Indonesia. Journal of Degraded and Mining Lands Management, 10(2), 4081–4092. https://doi.org/10.15243/jdmlm.2023.102.4081

Issue

Section

Research Article