Indexed By
Article Tools
Email this article (Login required)
Email the author (Login required)
About The Authors

Bokiraiya Latuamury
Department of Forestry, Faculty of Agriculture, University of Pattimura, Ambon 97233
Indonesia

Forest hydrology

Mersiana Sahureka
Department of Forestry, Faculty of Agriculture, University of Pattimura, Ambon 97233
Indonesia

Forestry

Wilma Nancy Imlabla
Department of Forestry, Faculty of Agriculture, University of Pattimura, Ambon 97233
Indonesia

Miranda H Hadijah
Department of Forestry, Faculty of Agriculture, University of Pattimura, Ambon 97233
Indonesia

John F Sahusilawane
Department of Forestry, Faculty of Agriculture, University of Pattimura, Ambon 97233
Indonesia

Husain Marasabessy
Department of Forestry, Faculty of Agriculture, University of Pattimura, Ambon 97233
Indonesia

Moda Talaohu
Department of Forestry, Faculty of Agriculture, University of Pattimura, Ambon 97233
Indonesia

User
Author Guidelines

SJR Rank

SCImago Journal & Country Rank

Sinta Rank

Sinta Rank

Visitor Statistic

Land use change and baseflow recession modelling in Wuryantoro Watershed, Wonogiri Regency, Central Java Province, Indonesia

Bokiraiya Latuamury, Mersiana Sahureka, Wilma Nancy Imlabla, Miranda H Hadijah, John F Sahusilawane, Husain Marasabessy, Moda Talaohu
  J. Degrade. Min. Land Manage. , pp. 3871-3882  
Viewed : 206 times

Abstract


Hydrological phenomena on the scale of a watershed are complex and may never be understood holistically. One of the innovations in baseflow hydrological modelling is the analysis of the baseflow recession curve, generally expressed as the natural storage of river flows and containing valuable information about the properties and characteristics of natural aquifer storage. This study aims to model land use change and baseflow recession in the Wuryantoro watershed, Wonogiri Regency, Central Java Province. The research method uses an exponential model in which changes in the characteristics of a baseflow recession are a function of land use changes over a certain period. The calibration of the seven graphical models of land use change against the characteristics of the baseflow recession shows that the seven curves of the land use change graphic model have model coefficients and curve slopes that vary from gentle to steep. The slope of the gentle and steep curve describes the bottom flow deposits' condition over time. The state of water storage in the seven better graphical models is that the change of forest remains forest followed by the change of agriculture into the forest, forest into the settlement, change of agricultural land into the settlement, change of forest to agricultural land, settlement remains settlement and change of agricultural land remains agrarian land.

Keywords


baseflow recession; land use change; the curve model

Full Text:

PDF

References


Aboelnour, M., Gitau, M.W. and Engel, B.A. 2020. A comparison of streamflow and baseflow responses to land use change and the variation in climate parameters using SWAT. Water (Switzerland) 12(1):191, doi:10.3390/w12010191.

Allan, E., Manning, P., Alt, F., Binkenstein, J., Blaser, S., Blüthgen, N., Böhm, S., Grassein, F., Hölzel, N., Klaus, V.H., Kleinebecker, T., Morris, E.K., Oelmann, Y., Prati, D., Renner, S. C., Rillig, M.C., Schaefer, M., Schloter, M., Schmitt, B., Schöning, I., Schrumpf, M., Solly, E., Sorkau, E., Steckel, J., Steffen-Dewenter, I., Stempfhuber, B., Tschapka, M., Weiner, C.N., Weisser, W.W., Werner, M., Westphal, C., Wilcke, W. and Fischer, M. 2015. Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecology Letters 18(8):834-843, doi:10.1111/ele.12469.

Arciniega-Esparza, S., Breña-Naranjo, J.A., Pedrozo-Acuña, A. and Appendini, C.M. 2017. HYDRORECESSION: A Matlab toolbox for streamflow recession analysis. Computers and Geosciences 98:87-92, doi:10.1016/j.cageo.2016.10.005.

Bao, C. and Fang, C.L. 2007. Water resources constraint force on urbanisation in water deficient regions: A case study of the Hexi Corridor, arid area of NW China. Ecological Economics 62(3-4):508-517, doi:10.1016/j.ecolecon.2006.07.013.

Bormann, H., Breuer, L., Gräff, T. and Huisman, J. 2007. Analysing the effects of soil properties changes associated with land use changes on the simulated water balance: A comparison of three hydrological catchment models for scenario analysis. Ecological Modelling 209(1): 29-40, doi:10.1016/j.ecolmodel.2007.07.004.

Buytaert, W., De Bièvre, B., Wyseure, G. andDeckers, J. 2004. The use of the linear reservoir concept to quantify the impact of changes in land use on the hydrology of catchments in the Andes. Hydrology and Earth System Sciences 8:106-114, doi:10.5194/hess-8-108-2004.

Cao, W., Bowden, W.B., Davie, T. and Fenemor, A. 2009. Modelling impacts of land cover change on critical water resources in the Motueka River Catchment, New Zealand. Water Resources Management 23(1):137-151, doi:10.1007/s11269-008-9268-2.

Fatchurohman, H., Adji, T.N., Haryono, E. and Wijayanti, P. 2018. Baseflow index assessment and master recession curve analysis for karst water management in Kakap Spring, Gunung Sewu. IOP Conference Series: Earth and Environmental Science 148(1):012029, doi:10.1088/1755-1315/148/1/012029.

Gregor, M. and Malík, P. 2012. User manual for Recession Curve 4.0. Version 2, 1–8.

Gregor, M. and Malík, P. 2012. Construction of master recession curve using genetic algorithms. Journal of Hydrology and Hydromechanics 60(1):3-15, doi:10.2478/v10098-012-0001-8.

Griffiths, G.A. and McKerchar, A.I. 2010. Recession of streamflow supplied from channel bed and bank storage. Journal of Hydrology New Zealand 49(2): 99-109.

Hauser, L.T., Nguyen Vu, G., Nguyen, B.A., Dade, E., Nguyen, H.M., Nguyen, T.T.Q., Le, T.Q., Vu, L.H., Tong, A.T.H. and Pham, H.V. 2017). Uncovering the Spatio-temporal dynamics of land cover change and fragmentation of mangroves in the Ca Mau peninsula, Vietnam using multi-temporal SPOT satellite imagery (2004–2013). Applied Geography 86:197-207, doi:10.1016/j.apgeog.2017.06.019.

Huang, X.D., Shi, Z.H., Fang, N.F. and Li, X. 2016. Influences of land use change on baseflow in mountainous watersheds. Forests 7(1):1-15, doi:0.3390/f7010016.

Kepner, W. and Yuan, Y. 2011. Assessing impacts of landuse and landcover changes on hydrology for the upper San Pedro watershed. Journal of Hydrology 407(1):105-114, doi:10.1016/j.jhydrol.2011.07.012.

Latuamury, B., Parera, L.R. and Marasabessy, H. 2020. Characterising river baseflow recession using linear reservoir model in Alang Watershed, Central Java, Indonesia. Indonesian Journal of Geography 52(1):22-28, doi:10.22146/ijg.43565.

Lee, G., Shin, Y. and Jung, Y. 2014. Development of web-based RECESS model for estimating baseflow using SWAT. Sustainability (Switzerland) 6(4):2357-2378, doi:10.3390/su6042357.

Legesse, D., Vallet-Coulomb, C., Gasse, F. and Starkel, L. 2003. Geomorphologic effects of anthropopression in the mountains of various climatic zones (selected examples). Studia Geomorphologica Carpatho-Balcanica 46(1-2):71-99.

Lin, Y.P., Hong, N.M., Wu, P.J., Wu, C. . and Verburg, P.H. 2007. Impacts of land use change scenarios on hydrology and land use patterns in the Wu-Tu watershed in Northern Taiwan. Landscape and Urban Planning 80(1-2):111-126, doi:10.1016/j.landurbplan.2006.06.007.

Mizumura, K. 2005. Analyses of flow mechanism based on master recession curves. Journal of Hydrologic Engineering 10(6), doi:10.1061/(ASCE)1084-0699(2005)10:6(468)

Nejadhashemi, A.P., Shen, C., Wardynski, B.J. and Mantha, P.S. 2010. Evaluating the impacts of land use changes on hydrologic responses in the agricultural regions of Michigan and Wisconsin. American Society of Agricultural and Biological Engineers Annual International Meeting 2010, ASABE 2010 3: 2091–2119, doi: 10.13031/2013.31927.

Nurkholis, A., Adji, T.N., Haryono, E., Cahyadi, A., Waskito, W.A., Fathoni, H., Kurniawan, I.A. and Agniy, R.F. 2019. Analysis of Master Recession Curve (MRC) and flood hydrograph components for karstification degree estimation in Kiskendo Cave, Jonggrangan Karst System, Indonesia. IOP Conference Series: Earth and Environmental Science 256(1), doi:10.1088/1755-1315/256/1/012011.

Pana, Y., Rothb, A., Yua, Z. and Doluschitzb, R. 2010. The impact of variation in scale on the behavior of a cellular automata used for land use change modeling. Computers, Environment and Urban Systems 34(5):400-408 doi:10.1016/j.compenvurbsys.2010.03.003.

Pauleit, S., Ennos, R. and Golding, Y. 2005. Modeling the environmental impacts of urban land use and land cover change- a study in Merseyside, UK. Landscape and Urban Planning 71(2-4):295-310, doi:10.1016/j.landurbplan.2004.03.009.

Price, K. 2011. Effects of watershed topography, soils, land use, and climate on baseflow hydrology in humid regions: A review. Progress in Physical Geography 35(4):465-492, doi:10.1177/0309133311402714.

Romshoo, S.A., Bhat, S.A. and Rashid, I. 2012. Geoinformatics for assessing the morphometric control on hydrological response at watershed scale in the upper Indus Basin. Journal of Earth System Science 121(3):659-686, doi:10.1007/s12040-012-0192-8.

Sannigrahi, S., Zhang, Q., Joshi, P.K., Sutton, P.C., Keesstra, S., Roy, P.S., Pilla, F., Basu, B., Wang, Y., Jha, S., Paul, S.K. and Sen, S. 2020. Examining effects of climate change and land use dynamic on biophysical and economic values of ecosystem services of a natural reserve region. Journal of Cleaner Production 257, 120424, doi:10.1016/j.jclepro.2020.120424.

Schröter, D., Cramer, W., Leemans, R., Prentice, I.C., Araújo, M.B., Arnell, N.W., Bondeau, A., Bugmann, H., Carter, T.R., Gracia, C.A., De La Vega-Leinert, A.C., Erhard, M., Ewert, F., Glendining, M., House, J.I., Kankaanpää, S., Klein, R.J. T., Lavorel, S., Lindner, M., Metzger, M.J., Meyer, J., Mitchell, T.D., Reginster, I., Rounsevell, M., Sabaté, S., Sitch, S., Smith, B., Smith, J., Smith, P., Sykes, M.T., Thonicke, K., Thuiller, W., Tuck, G., Zaehle, S. andZierl, B. 2005. Ecosystem service supply and vulnerability to global change in Europe. Science 310(57 52):1333-1337, doi:10.1126/science.1115233.

Tallaksen, L. 1995. A review of baseflow recession analysis. Journal of Hydrology 165(1-4):349-370, doi:10.1016/0022-1694(95)92779-d.

Thomas, B.F. and Vogel, R.M. 2015. Baseflow Recession Analysis : Testing the Nonlinear Reservoir Hypothesis. Tufts University, January, 2011.

Verburg, P.H. 2006. Simulating feedbacks in land use and land cover change models. Landscape Ecology 21(8):1171-1183, doi:10.1007/s10980-006-0029-4

Verburg, P.H., Soepboer, W., Veldkamp, A., Limpiada, R., Espaldon, V. and Mastura, S.S.A. 2002. Modeling the spatial dynamics of regional land use: The CLUE-S model. Environmental Management 30(3):391-405, doi:10.1007/s00267-002-2630-x.

Wang, D. and Cai, X. 2010. Comparative study of climate and human impacts on seasonal baseflow in urban and agricultural watersheds. Geophysical Research Letters 37(6), doi:10.1029/2009GL041879.

Wang, D., Cai, X. andVen Te, C. 2009. Detecting human interferences to low flows through base flow recession analysis. Water Resources Research 45(7):1-12, doi:10.1029/2009WR007819.

Wittenberg, H. 1999. Basefow recession and recharge as nonlinear storage processes. Hydrological Processes 13:715-726.

Yang, X, Xin-Qi, Z. and Li-Na, Lv. 2012. A spatiotemporal model of land use change based on ant colony optimisation, Markov chain and cellular automata. Ecological Modelling 233:11-19, doi:10.1016/j.ecolmodel.2012.03.011.


Refbacks

  • There are currently no refbacks.




Copyright (c) 2022 Journal of Degraded and Mining Lands Management

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Indexed By