Declined peat heterotrophic respiration as consequences from zeolite amendment simulation: coupling descriptive and predictive modelling approaches

Authors

  • Heru Bagus Pulunggono Department of Soil Science and Land Resource, Faculty of Agriculture, IPB University http://orcid.org/0000-0003-3924-7839
  • Nabila Hanifah Graduate Program of Soil Science and Land Resources Department, Faculty of Agriculture, IPB University, 16680, West Java, Indonesia
  • Desi Nadalia Department of Soil Science and Land Resource, Faculty of Agriculture, IPB University http://orcid.org/0000-0001-5495-7340
  • Moh Zulfajrin Graduate Program of Soil Science and Land Resources Department, Faculty of Agriculture, IPB University, 16680, West Java, Indonesia http://orcid.org/0000-0001-8231-3622
  • Lina Lathifah Nurazizah Graduate Program of Agronomy and Horticulture Department, Faculty of Agriculture, IPB University, 16680, West Java, Indonesia http://orcid.org/0000-0002-4229-6896
  • Husni Mubarok Agronomy Research, Astra Agro Lestari Tbk, Jakarta
  • Nizam Tambusai Agronomy Research, Astra Agro Lestari Tbk, Jakarta, Indonesia
  • Syaiful Anwar Department of Soil Science and Land Resource, Faculty of Agriculture, IPB University http://orcid.org/0000-0002-9928-5821
  • Supiandi Sabiham Department of Soil Science and Land Resource, Faculty of Agriculture, IPB University http://orcid.org/0000-0002-1995-5670

DOI:

https://doi.org/10.15243/jdmlm.2022.101.3889

Keywords:

artificial intelligence, CO2 emission, machine learning, multivariate analysis, pedotransfer modelling

Abstract

Nowadays, halting greenhouse gasses (GHG) emission is the world's major concern to mitigate global climate change. In oil palm cultivated tropical peatland, GHG emission is primarily constituted of CO2 flux emitted from aerobic heterotrophic respiration (Rh), the natural degradation process of organic material in an oxidative environment. By coupling descriptive and predictive statistical approaches, this study attempt to gain an in-depth understanding of the effects of zeolite rates and incubation time on CO2 emission that came from aerobic Rh in peat, as well as their decomposition process. This study found that zeolite amelioration up to 30% of the peat at field capacity and starting from the first month of observation (month-1) significantly restricted peat Rh, denoted by a reduced amount of observed CO2 flux (0.021 and 0.019-0.012 mg m-2 sec-1, respectively). Both factors and several soil variables exhibited some non-linear relationships with Rh at different magnitudes and importance, showing the limitation of the traditional linear-based approach to interpreting their complex interrelationships, as well as predicting CO2 flux. This study highlights the vital role of a polynomial (GAM) and artificial intelligence (Cubist and GBM) -based pedotransfer models in improving our understanding regarding the dynamic of the peat decomposition process as affected by zeolite amendment.

References

Aditya Prananto, J., Minasny, B., Comeau, L., Rudiyanto and Grace, P. 2020. Drainage increases CO2 and N2O emissions from tropical peat soils. Global Change Biology 26(8):4583-4600, doi:10.1111/gcb.15147.

Adjuik, T.A. and Davis, S.C. 2022. Machine learning approach to simulate soil CO2 fluxes under cropping systems. Agronomy 12: 197, doi:10.3390/agronomy12010197.

Ahmed, O.H., Azrumi, N.A.B., Jalloh, M.B. and Jol, H. 2015. Using clinoptilolite zeolite for enhancing potassium retention in tropical peat soil. In: Jol, H. and Jusop, S. (Eds), Advances in Tropical Soil Science. Volume 3. Universiti Putra Malaysia Press. Serdang, Selangor. MY. pp. 112-127.

Al-Busaidi, A., Yamamoto, T., Tanigawa, T. and Rahman, H.A. 2010. Use of zeolite to alleviate water stress on subsurface drip irrigated barley under hot environments. Irrigation and Drainage 60(4):473-480, doi:10.1002/ird.595.

An, C., Park, Y.W., Ahn, S.S., Han, K., Kim, H. and Lee, S.-K. 2021. Radiomics machine learning study with a small sample size: Single random training-test set split may lead to unreliable results. PloSONE 16(8):e0256152, doi:10.1371/journal.pone.0256152.

Awasthi, M.K., Wang, Q., Huang, H., Ren, X., Lahori, A. H., Mahar, A., Ali, A., Shen, F., Li, R. and Zhang, Z. 2016. Influence of zeolite and lime as additives on greenhouse gas emissions and maturity evolution during sewage sludge composting. Bioresource Technology 216:172=181, doi:10.1016/j.biortech.2016.05.065.

Badora, A. 2016. the influence of zeolites on quality indicators of soil-plant connection and food safety. In Belviso, C. (Ed), Zeolites - Useful Minerals. IntechOpen. London. UK. p.205. doi:10.5772/61950.

Baghbani-Arani, A., Jami, M.G., Namdari, A. and Karami Borz-Abad, R. 2020. Influence of irrigation regimes, zeolite, inorganic and organic manures on water use efficiency, soil fertility and yield of sunflower in a sandy soil. Communications in Soil Science and Plant Analysis 51(6):711-725, doi:10.1080/00103624.2020.1729791.

Baghbani-Arani, A., Modarres-Sanavy, S.A.M. and Poureisa, M. 2021. Improvement the soil physicochemical properties and fenugreek growth using zeolite and vermicompost under water deficit conditions. Journal of Soil Science and Plant Nutrition 21(2):1213-1228, doi:10.1007/s42729-021-00434-y.

Basu, K., Sinha, R., Ong, A. and Basu, T. 2020. Artificial intelligence: how is it changing medical sciences and its future? Indian Journal of Dermatology 65(5):365-370, doi:10.4103/ijd.IJD_421_20.

Batubara, S.F., Agus, F., Rauf, A. and Elfiati, D. 2019. Impact of soil collar insertion depth on microbial respiration measurements from tropical peat under an oil palm plantation. Mires and Peat 24:1-11, doi: 10.19189/MaP.2018.DW.373.

Bautista, J. M., Kim, H., Ahn, D.-H., Zhang, R. and Oh, Y.S. 2011. Changes in physicochemical properties and gaseous emissions of composting swine manure amended with alum and zeolite. Korean Journal of Chemical Engineering 28(1): 189-194, doi:10.1007/s11814-010-0312-6.

Benos, L., Tagarakis, A.C., Dolias, G., Berruto, R., Kateris, D. and Bochtis, D. 2021. Machine learning in agriculture: a comprehensive updated review. Sensors 21:3758, doi:10.3390/s21113758.

Bock, F.E., Aydin, R.C., Cyron, C.J., Huber, N., Kalidindi, S.R. and Klusemann, B. 2019. A review of the application of machine learning and data mining approaches in continuum materials mechanics. Frontiers in Materials 6:110; doi:10.3389/fmats.2019.00110.

Bond-Lamberty, B. 2018. New techniques and data for understanding the global soil respiration flux. Earth's Future 6:1176-1180, doi:10.1029/2018EF000866.

Breiman, L. 2001. Random forest. Machine Learning 45(1):5-32, doi:10.1023/a:1010933404324.

Cataldo, E., Salvi, L., Paoli, F., Fucile, M., Masciandaro, G., Manzi, D., Masini, C. M. and Mattii, G. B. 2021. Application of zeolites in agriculture and other potential uses: a review. Agronomy 11(8):1547, doi:10.3390/agronomy11081547.

Comeau, L.P., Hergoualc’h, K. and Verchot, L.V. 2021. Dataset on soil carbon dioxide fluxes from an incubation with tropical peat from three different land-uses in Jambi Sumatra Indonesia. Data in Brief 39:107597, doi:10.1016/j.dib.2021.107597.

Cooper, H.V., Evers, S., Aplin, P., Crout, N., Dahalan, M.P. B. and Sjogersten, S. 2020. Greenhouse gas emissions resulting from conversion of peat swamp forest to oil palm plantation. Nature Communications 11:407, doi:10.1038/s41467-020-14298-w.

Cooper, H.V., Vane, C.H., Evers, S., Aplin, P., Girkin, N.T. and Sjögersten, S. 2019. From peat swamp forest to oil palm plantations: The stability of tropical peatland carbon. Geoderma 342:109-117, doi:10.1016/j.geoderma.2019.02.02.

Dadap, N.C., Hoyt, A.M., Cobb, A.R., Oner, D., Kozinski, M., Fua, P.V., Rao, K., Harvey, C.F. and Konings, A.G. 2021. Drainage canals in Southeast Asian peatlands increase carbon emissions. AGU Advances 2:e2020AV000321, doi:10.1029/2020AV000321.

Dariah, A., Marwanto, S. and Agus, F. 2013. Root- and peat-based CO2 emissions from oil palm plantations. Mitigation and Adaptation Strategies for Global Change 19(6):831-843, doi:10.1007/s11027-013-9515-6.

De Baerdemaeker, T. and De Vos, D. 2013. Trapdoors in zeolites. Nature Chemistry 5(2):89-90, doi:10.1038/nchem.1560.

Deshmukh, C.S., Julius, D., Desai, A.R., Asyhari, A., Page, S.E., Nardi, N., Susanto, A.P., Nurholis, N., Hendrizal, M., Kurnianto, S., Suardiwerianto, Y., Salam, Y.W., Agus , F., Astiani, D., Sabiham, S., Gauci, V. and Evans, C.D. 2021. Conservation slows down emission increase from a tropical peatland in Indonesia. Nature Geoscience 14(7):484-490, doi:10.1038/s41561-021-00785-2.

Dohong, A., Abdul Aziz, A. and Dargusch, P. 2018. A review of techniques for effective tropical peatland restoration. Wetlands 38(2):275-292, doi:10.1007/s13157-018-1017-6.

Eviati and Sulaeman, 2009. Technical Guidelines for Soil, Plant, Water, and Fertilizer Chemical Analyses. B.H. Prasetyo, D. Santoso, L.R. Widowati (Eds.). Indonesian Soil Research Institute. Balai Penelitian Tanah, Bogor. Pp. 211-213 (in Indonesian).

Friedman, J.H. 2001. Greedy function approximation: a gradient boosting machine. The Annals of Statistics 29(5):1189-1232, doi:10.1214/aos/1013203451.

Greenwell, B., Boehmke, B. and Cunningham, J. 2020. Package ‘gbm’. Generalized Boosted Regression Models. Retrieved from https://cran.rproject.org/web/packages/gbm/index.html.

Hastie, T. 2022. Package ‘gam’. Generalized Additive Models. Retrieved from https://cran.r-project.org/web/packages/gam/

Hirano, T., Jauhiainen, J., Inoue, T. and Takahashi, H. 2008. Controls on the carbon balance of tropical peatlands. Ecosystems 12(6):873-88, doi:10.1007/s10021-008-9209-1.

Ho, T.K. 1998. The random subspace method for constructing decision forests. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(8):832-844, doi:10.1109/34.709601.

Holl, D., Pfeiffer, E.-M. and Kutzbach, L. 2020. Comparison of eddy covariance CO2 and CH4 fluxes from mined and recently rewetted sections in a northwestern German cutover bog. Biogeosciences 17(10):2853–2874, doi:10.5194/bg-17-2853-2020.

Husson, F., Josse, J., Le, S. and Mazet, J. 2020. Package ‘FactoMineR’. Multivariate Exploratory Data Analysis and Data Mining. Retrieved from https://cran.rproject.org/web/packages/FactoMineR/index.html.

Ishikura, K., Hirano, T., Okimoto, Y., Hirata, R., Kiew, F., Melling, L., Aeriesc, E.B., Loc, K.L., Musinc, K.K., Wailic, J.W., Wonga, G.X. and Ishii, Y. 2018. Soil carbon dioxide emissions due to oxidative peat decomposition in an oil palm plantation on tropical peat. Agriculture, Ecosystems & Environment 254:202–212, doi:10.1016/j.agee.2017.11.025.

Jauhiainen, J., Kerojoki, O., Silvennoinen, H., Limin, S. and Vasander, H. 2014. Heterotrophic respiration in drained tropical peat is greatly affected by temperature—a passive ecosystem cooling experiment. Environmental Research Letters 9(10):105013, doi:10.1088/1748-9326/9/10/10501.

Karami, S., Hadi, H., Tajbaksh, M. and Modarres-Sanavy, S. A. M. 2020. Effect of zeolite on nitrogen use efficiency and physiological and biomass traits of amaranth (Amaranthus hypochondriacus) under water-deficit stress conditions. Journal of Soil Science and Plant Nutrition 20:1427-1441, doi:10.1007/s42729-020-00223-z.

Kassambara, A. and Mundt, F. 2020. Package: 'factoextra'. Extract and Visualize the Results of Multivariate Data Analyses. Retrieved from https://cran.rproject.org/web/packages/factoextra/index.html.

Khanday, W.A., Kabir, G. and Hameed, B.H. 2016. Catalytic pyrolysis of oil palm mesocarp fibre on a zeolite derived from low-cost oil palm ash. Energy Conversion and Management 127:265-272, doi:10.1016/j.enconman.2016.08.093.

Khanday, W.A., Okoye, P.U. and Hameed, B.H. 2017. Biodiesel byproduct glycerol upgrading to glycerol carbonate over lithium–oil palm ash zeolite. Energy Conversion and Management 151:472–480, doi:10.1016/j.enconman.2017.08.091.

Kolle, J.M., Fayaz, M. and Sayari, A. 2021. Understanding the effect of water on CO2 adsorption. Chemical Reviews 121(13):7280-7345, doi:10.1021/acs.chemrev.0c00762.

Kongnoo, A., Tontisirin, S., Worathanakul, P. and Phalakornkule, C. 2017. Surface characteristics and CO2 adsorption capacities of acid-activated zeolite 13X prepared from palm oil mill fly ash. Fuel 193:385-394, doi:10.1016/j.fuel.2016.12.087.

Krishnan, K., Ngerong, A.A., Ahim, K., Ahmed, O.H., Ali, M., Omar, L. and Musah, A.A. 2021. Mitigating potassium leaching from muriate of potash in a tropical peat soil using clinoptilolite zeolite, forest litter compost, and chicken litter biochar. Agronomy 11:1900, doi:10.3390/agronomy11101900.

KuÄić, D., KopÄić, N. and BriÅ¡ki, F. 2013. Zeolite and potting soil sorption of CO2 and NH3 evolved during co-composting of grape and tobacco waste. Chemical Papers 67(9): 1172-1180, doi:10.2478/s11696-013-0322-z.

Kuhn, M. and Johnson, K. 2020. Feature Engineering and Selection A Practical Approach for Predictive Models. CRC Press. 297p.

Kuhn, M., Wing, J., Weston, S., Williams, A., Keefer, C., Engelhardt, A., Cooper T., Mayer Z., Kenkel, B., R Core Team, Benesty, M., Lescarbeau, R., Ziem A., Scrucca, L., Tang, Y., Candan, C. and Hunt, T. 2022. Package ‘caret’. Classification and Regression Training. Retrieved from https://cran.rproject.org/web/packages/caret/index.html.

Kumar, P., Adelodun, A.A., Khan, M.F., Krisnawati, H. and Garcia-Menendez, F. 2020. Towards an improved understanding of greenhouse gas emissions and fluxes in tropical peatlands of Southeast Asia. Sustainable Cities and Society 53:101881, doi:10.1016/j.scs.2019.101881.

Kurnianto, S., Warren, M., Talbot, J., Kauffman, B., Murdiyarso, D. and Frolking, S. 2014. Carbon accumulation of tropical peatlands over millennia: a modeling approach. Global Change Biology 21(1): 431-444, doi:10.1111/gcb.12672.

Leifeld, J., Wüst-Galley, C. and Page, S. (2019). Intact and managed peatland soils as a source and sink of GHGs from 1850 to 2100. Nature Climate Change 9:945-947, doi:10.1038/s41558-019-0615-5.

Liakos, K., Busato, P., Moshou, D., Pearson, S. and Bochtis, D. 2018. Machine learning in agriculture: a review. Sensors 18(8):2674, doi:10.3390/s18082674.

Liaw, A. and Wiener, M. 2018. Package ‘randomForest’. Breiman and Cutler’s Random Forests for Classification and Regression. Retrieved from https://cran.rproject.org/web/packages/randomForest/index.html.

Lim, S.-S., Park, H.-J., Hao, X., Lee, S.-I., Jeon, B.-J., Kwak, J.-H. and Choi, W.-J. 2017. Nitrogen, carbon, and dry matter losses during composting of livestock manure with two bulking agents as affected by co-amendments of phosphogypsum and zeolite. Ecological Engineering 102:280–290, doi:10.1016/j.ecoleng.2017.02.031.

Lim Kim Choo, L.N., Ahmed, O.H., Talib, S.A.A., Ghani, M.Z.A. and Sekot, S. 2020. Clinoptilolite zeolite on tropical peat soils nutrient, growth, fruit quality, and yield of Carica papaya L. cv. Sekaki. Agronomy 10(9). 1320, doi:10.3390/agronomy10091320.

Ma, A.C. 2020. Making data reports useful: from descriptive to predictive. Cureus 12(10):e10920, doi:10.7759/cureus.10920.

Madsen, R., Xu, L., Claassen, B. and McDermitt, D. 2009. Surface monitoring method for carbon capture and storage projects. Energy Procedia 1(1):2161-2168, doi:10.1016/j.egypro.2009.01.281.

Maleki, F., Muthukrishnan, N., Ovens, K., Reinhold, C. and Forghani, R. 2020. Machine learning algorithm validation. Neuroimaging Clinics of North America 30(4):433-445, doi:10.1016/j.nic.2020.08.004.

Manning, F.C., Kho, L.K., Hill, T.C., Cornulier, T. and Teh, Y.A. 2019. Carbon emissions from oil palm plantations on peat soil. Frontiers in Forests and Global Change 2:37, doi:10.3389/ffgc.2019.00037.

Marwanto, S. and Agus, F. 2014. Is CO2 flux from oil palm plantations on peatland controlled by soil moisture and/or soil and air temperatures?. Mitigation and Adaptation Strategies for Global Change 19:809-819, doi:10.1007/s11027-013-9518-3.

Megías-Sayago, C., Bingre, R., Huang, L., Lutzweiler, G., Wang, Q. and Louis, B. 2019. CO2 Adsorption capacities in zeolites and layered double hydroxide materials. Frontiers in Chemistry 7,doi:10.3389/fchem.2019.00551.

Melling, L., Chaddy, A., Goh, K.J and Hatano, R. 2013. Soil CO2 fluxes from different ages of oil palm in tropical peatland of Sarawak, Malaysia as influenced by environmental and soil properties. Acta Horticulturae 982:25-35, doi:10.17660/ActaHortic.2013.982.2

Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., Leisch, F., Chang, C.-C. and Lin. C.-C. 2022. Package ‘e1071’. Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien. Retrieved from https://cran.rproject.org/web/packages/ e1071/index.html.

Miettinen, J., Hooijer, A., Vernimmen, R., Liew, S.C. and Page, S.E. 2017. From carbon sink to carbon source: extensive peat oxidation in insular Southeast Asia since 1990. Environmental Research Letters 12(2):02401, doi:10.1088/1748-9326/aa5b6f.

Mihok, F., Macko, J., Oriňak, A., Oriňaková, R., Kovaľ, K., Sisáková, K., Petrus, O. and Kostecká, Z. 2020. Controlled nitrogen release fertilizer based on zeolite clinoptilolite: study of preparation process and release properties using molecular dynamics. Current Research in Green and Sustainable Chemistry 100030, doi:10.1016/j.crgsc.2020.100030.

Milborrow, S. 2021. Package ‘earth’. Multivariate Adaptive Regression Splines. Retrieved from https://cran.rproject.org/web/packages/earth/index.html.

Molnar, C. 2022. Interpretable Machine Learning. A Guide for Making Black Box Models Explainable. Retrieved from: https://christophm.github.io/interpretable-ml-book/

Molnar, C. and Schratz, P. 2022. Package ‘iml’. Interpretable Machine Learning. Retrieved from https://cran.r-project.org/web/packages/iml/index.html.

Mondal, M., Biswas, B., Garai, S., Sarkar, S., Banerjee, H., Brahmachari, K., Bandyopadhyay, P.K., Maitra, S., Brestic, M., Skalicky, M., Ondrisik, P. and Hossain, A. 2021. Zeolites enhance soil health, crop productivity and environmental safety. Agronomy 11(3):448, doi:10.3390/agronomy11030448.

Morante-Carballo, F., Montalván-Burbano, N., Carrión-Mero, P. and Espinoza-Santos, N. 2021. Cation exchange of natural zeolites: worldwide research. Sustainability 13:7751, doi:10.3390/su13147751.

Nakhli, S.A.A., Delkash, M., Bakhshayesh, B.E. and Kazemian, H. 2017. Application of zeolites for sustainable agriculture: a review on water and nutrient retention. Water, Air, & Soil Pollution 228(12), doi:10.1007/s11270-017-3649-1.

Nurzakiah, S., Sutandi, A., Djajakirana, G., Sudadi, U. and Sabiham S. 2021. The contribution of organic acid on heterotrophic CO2 flux from tropical peat: a trenching study. Journal of Degraded and Mining Lands Management 9(1): 3035-3044, doi:10.15243/jdmlm.2021.091.3035.

Padarian, J., Minasny, B. and McBratney, A.B. 2020. Machine learning and soil sciences: a review aided by machine learning tools. SOIL 6(1):35-52, doi:10.5194/soil-6-35-2020.

Page, S., Mishra, S., Agus, F., Anshari, G., Dargie, G., Evers, S., Jauhiainen, J., Jaya, A., Sancho, A.J.J., Laurén, A., Sjögersten, S., Suspense, I.A., Wijedasa, L.S., and Evans, C.D. 2022. Anthropogenic impacts on lowland tropical peatland biogeochemistry. Nature Reviews Earth & Environment 3:426-443, doi:10.1038/s43017-022-00289-6.

Patrick, K., van der Vegte, W.F., Hribernik, K., Klaus-Dieter, T. 2019. Towards an approach integrating various levels of data analytics to exploit product-usage information in product development. Proceedings of the 22nd International Conference on Engineering Design (ICED19), Delft, The Netherlands. August 5-8. 2019. Delft, The Netherlands. p 2627-2636. doi:10.1017/dsi.2019.269.

Peng, S., Li, H., Xu, Q., Lin, X. and Wang, Y. 2019. Addition of zeolite and superphosphate to windrow composting of chicken manure improves fertilizer efficiency and reduces greenhouse gas emission. Environmental Science and Pollution Research 26(36):36845-36856, doi:10.1007/s11356-019-06544-6.

Pulunggono, H,B., Anwar, S. and Sabiham, S. 2019. Decomposition of oil palm frond and leaflet residues. Agrivita Journal of Agricultural Science 41(3):524-536, doi:10.17503/ agrivita.v41i3.2062.

Pulunggono, H.B., Siswanto, Mubarok, H., Wiadiastuti, H., Tambusai, N., Zulfajrin, M., Anwar, S., Taniwiryono, D., Sumawinata, B. and Sabiham, S. 2022a. Seasonal litter contribution to total peat respiration from drained tropical peat under mature oil palm plantation. Journal of Degraded And Mining Lands Management 9(2):3247-3263, doi:10.15243/jdmlm.2022.092.3247.

Pulunggono, H.B., Fitriana, S., Nadalia, D., Nurazizah, L.L., Zulfajrin, M., Mubarok, H., Tambusai, N., Anwar, S. and Sabiham, S. 2022b. Simulating and modeling CO2 flux emitted from decomposed oil palm root cultivated at tropical peatland as affected by water content and residence time. Journal of Degraded and Mining Lands Management 9(4):3663-3676, doi:10.15243/jdmlm.2022.094.3663.

R Core Team. 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

Ramos, F., Weber, O.L.S., Morais, E.B., Dores, E.F.G.C., Lima, Z.M. and Novais, J.M.P. 2018. Physical, chemical, and microbiological evaluation of a compost conditioned with zeolites. African Journal of Agricultural Research 13(14):664-672, doi:10.5897/AJAR2018.12969s

Rossiter, D.G. 2018. Past, present & future of information technology in pedometrics. Geoderma 324:131–137, doi:10.1016/j.geoderma.2018.03.009

Sabiham, S., Marwanto, S., Watanabe, T., Funakawa, S., Sudadi, U. and Agus, F. 2014. Estimating the relative contributions of root respiration and peat decomposition to the total CO2 flux from peat soil at an oil palm plantation in Sumatra, Indonesia. Tropical Agriculture and Development 58(3):87-93, doi:10.11248/jsta.58.87.

Sakabe, A., Itoh, M., Hirano, T. and Kusin, K. 2018. Ecosystem-scale methane flux in tropical peat swamp forest in Indonesia. Global Change Biology 24(11):5123-5136, doi:10.1111/gcb.14410.

Santi, L.P., Goenadi, D.H., Osaki, M. 2021. Zeolites and aggregate-stabilizing microbes for reducing the degradation and carbon emissions in tropical peatlands. In: Osaki, M., Tsuji, N., Foead, N., Rieley, J. (Eds). Tropical Peatland Eco-management. Springer Singapore. pp 327-335, doi:10.1007/978-981-33-4654-3_10.

Szerement, J., Szatanik-Kloc, A., Jarosz, R., Bajda, T. and Mierzwa-Hersztek, M. 2021. Contemporary applications of natural and synthetic zeolites from fly ash in agriculture and environmental protection. Journal of Cleaner Production 311:127461, doi:10.1016/j.jclepro.2021.127461.

Tabe-Bordbar, S., Emad, A., Zhao, S.D. and Sinha, S. 2018. A closer look at cross-validation for assessing the accuracy of gene regulatory networks and models. Scientific Reports 8(1), doi:10.1038/s41598-018-24937-4.

Therneau, T., Atkinson, B. and Ripley, B. 2022. Package ‘rpart’. Recursive Partitioning and Regression Trees. Retrieved from https://cran.rproject.org/web/packages/rpart/index.html.

Valencia, L., Rosas-Arbelaez, W., Aguilar-Sánchez, A., Mathew, A.P. and Palmqvist, A.E.C. 2019. Biobased micro/meso/macro-porous hybrid foams with ultra-high zeolite loadings for selective capture of carbon dioxide. ACS Applied Materials & Interfaces 11(43):40424-40431, doi:10.1021/acsami.9b11399.

Venglovsky, J., Sasakova, N., Vargova, M., Pacajova, Z., Placha, I., Petrovsky, M. and Harichova, D. 2005. Evolution of temperature and chemical parameters during composting of the pig slurry solid fraction amended with natural zeolite. Bioresource Technology 96(2):181-189, doi:10.1016/j.biortech.2004.05.006.

Wakhid, N. and Hirano, T. 2021. Contribution of CO2 emission from litter decomposition in an oil palm plantation on tropical peatland. IOP Conference Series: Earth and Environmental Science 648:012133, doi:10.1088/1755-1315/648/1/012133.

Wang, J., Hu, Z., Xu, X., Jiang, X., Zheng, B., Liu, X., Pan, X. and Kardol, P. 2014. Emissions of ammonia and greenhouse gases during combined pre-composting and vermicomposting of duck manure. Waste Management 34(8):1546-1552, doi:10.1016/j.wasman.2014.04.010.

Wang, H., Lu, Y., Xu, J., Liu, X. and Sheng, L. 2020. Effects of additives on nitrogen transformation and greenhouse gases emission of co-composting for deer manure and corn straw. Environmental Science and Pollution Research 28(10):13000-13020, doi:10.1007/s11356-020-11302-0.

Wickham, H. 2022. Package ‘tidyverse’. Easily Install and Load the 'Tidyverse'. Retrieved from https://cran.r-project.org/web/packages/tidyverse/index.html.

Widiastuti, H., Taniwiryono, D., Siswanto, Pulunggono, H, B., Anwar. S., Sumawinata. B., Mubarok, H. and Sabiham, S. 2021. Exploration of lignocellulolytic microbes in oil palm rhizosphere on peat soils and their respiration activities. Microbiology Indonesia 15(1):27-35, doi:10.5454/mi.15.1.5.

Wijedasa, L.S., Jauhainen, J., Könönen, M., Lampela, M., Vasander, H., Leblanc, M.-C., Evers, S., Smith, T.E.L., Yule, C.M., Varkkey, H., et al. 2017. Denial of long-term issues with agriculture on tropical peatlands will have devastating consequences. Global Change Biology 23:977-982, doi:10.1111/gcb.13516.

Wood, S. 2022. Package ‘mgcv’. Mixed GAM Computation Vehicle with Automatic Smoothness Estimation. Retrieved from https://cran.r-project.org/web/packages/mgcv/index.html

Wright, M.N., Wager, S. and Probst, P. 2021. Package 'ranger'. A Fast Implementation of Random Forests. Retrieved from https://cran.r-project.org/web/packages/ranger/index.html.

Xu, Z., Wang, S., Wang, Z., Dong, Y., Zhang, Y., Liu, S. and Li, J. 2021. Effect of drainage on microbial enzyme activities and communities dependent on depth in peatland soil. Biogeochemistry 155(3): 323-341, doi:10.1007/s10533-021-00828-1.

Ye, Z., Yang, J., Zhong, N., Tu, X., Jia, J. and Wang, J. 2019. Tackling environmental challenges in pollution controls using artificial intelligence: A review. Science of The Total Environment 69:134279, doi:10.1016/j.scitotenv.2019.134279

Downloads

Submitted

14-06-2022

Accepted

02-08-2022

Published

01-10-2022

How to Cite

Pulunggono, H. B., Hanifah, N., Nadalia, D., Zulfajrin, M., Nurazizah, L. L., Mubarok, H., Tambusai, N., Anwar, S., & Sabiham, S. (2022). Declined peat heterotrophic respiration as consequences from zeolite amendment simulation: coupling descriptive and predictive modelling approaches. Journal of Degraded and Mining Lands Management, 10(1), 3889–3904. https://doi.org/10.15243/jdmlm.2022.101.3889

Issue

Section

Research Article

Most read articles by the same author(s)

1 2 > >>