Tolerance of lonkida (Nauclea orientalis L.) seedlings inoculated with mycorrhizae against drought and waterlogging stress


  • Faisal Danu Tuheteru Universitas Halu OLeo
  • Asrianti Arif Department of Forestry, Faculty of Forestry and Environmental Science, Universitas Halu Oleo, Kendari, 93121, Indonesia
  • Husna Husna Department of Forestry, Faculty of Forestry and Environmental Science, Universitas Halu Oleo, Kendari, 93121, Indonesia
  • Basrudin Basrudin Department of Forestry, Faculty of Forestry and Environmental Science, Universitas Halu Oleo, Kendari, 93121, Indonesia
  • Albasri Albasri Department of Forestry, Faculty of Forestry and Environmental Science, Universitas Halu Oleo, Kendari, 93121, Indonesia
  • Irdika Mansur Department of Silviculture, Faculty of Forestry, IPB University, Dramaga, Bogor 16680
  • Maman Turjaman Forest Research and Development Center, Jl. Raya Gn. Batu No.5, Bogor 16119
  • Miranda Hadiyanti Hadijah Department of Forestry, Faculty of Agriculture, Universitas Pattimura, Jl. Ir. Putuhena, Poka, Ambon 97233
  • Agnitje Rumambi Department of Animal Nutrition, Faculty of Animal Science, Sam Ratulangi University, Bahu-Manado, 95115
  • Budi Prasetya Departement of Soil, Faculty of Agriculture, Universitas Brawijaya, Jl. Veteran No. 1, Malang 65145
  • Armila R Male Department of Forestry, Faculty of Forestry and Environmental Science, Universitas Halu Oleo, Kendari, 93121



Glomeromycota, relative growth, Rubiaceae, tolerance, water stress


Abiotic stress is a limiting factor for plant growth and development. The use of arbuscular mycorrhizal fungi can reduce the negative effects of abiotic stress. This study aimed to determine the tolerance of Nauclea orientalis inoculated with mycorrhizae to drought and waterlogging stresses. This research was carried out at the Indonesian Mycorrhizal Association’s greenhouse and Forestry laboratory University of Halu Oleo in Kendari City, Southeast Sulawesi Province, Indonesia, from March to June 2019. The study used a factorial completely randomized design consisting of two factors. The first factor was Arbuscular Mycorrhizal Fungi (AMF) inoculations (A) consisting of a control, AMF types of Acaulospora sp.-1, and Claroideoglomus etunicatum.  The secod factor was environmental stress treatments (B) consisting of a control, soil moisture 25% of field capacity, 50% of field capacity, inundated as high the polybag (9 cm high) and inundated over the polybag. The results showed that local AMF was effective in improving plant growth. Interaction between inoculation of Acaulospora sp.-1 and environmental stress significantly increased AMF colonization on the N. orientalis roots. Inoculation of C.etunicatum significantly improved the N. orientalis growth. The treatment of drought stress with a field of 50% field capacity negatively influenced plant dry weight and the relative growth of the N. orientalis.

Author Biographies

Faisal Danu Tuheteru, Universitas Halu OLeo


Asrianti Arif, Department of Forestry, Faculty of Forestry and Environmental Science, Universitas Halu Oleo, Kendari, 93121, Indonesia


Husna Husna, Department of Forestry, Faculty of Forestry and Environmental Science, Universitas Halu Oleo, Kendari, 93121, Indonesia



Abdelmalik, A.M., Alsharani, T.S., Al-Qarawi, A.A,. Ahmed, A.I. and Aref, I.M. 2020. Response of growth and drought tolerance of Acacia seyal Del. seedlings to arbuscular mycorrhizal fungi. Plant, Soil and Environment 66:264–271, doi:10.17221/206/2020-PSE.

Al-Kariki, G., McMichael, B. and Zak, J. 2003. Field response of wheat to arbuscular mycorrhizal fungi and drought stress. Mycorrhiza 14:263-269, doi:10.1007/s00572-003-0265-2.

Ashraf, M.A., Iqbal, M., Rasheed, R., Hussain, I., Riaz, M. and Arif, M.S. 2018. Environmental Stress and Secondary Metabolites in Plants: An Overview. In : Ahmad. P. et al. (editors) Plant Metabolites and Regulation Under Environmental Stress. Elsevier, doi:10.1016/B978-0-12-812689-9.00008-X.

Bahadur, A., Batool, A., Nasir, F., Jiang, S., Mingsen, Q., Zhang, O., Pan, J., Liu, Y. and Feng, H. 2019. Mechanistic insights into arbuscular mycorrhizal fungi-mediated drought stress tolerance in plants. International Journal of Molecular Sciences 20:4199, doi:10.3390/ijms20174199.

Begum, N., Akhtar, K., Ahanger, M.A., Iqbal, M., Wang, P., Mustafa, N.S. and Zhang, L 2021. Arbuscular mycorrhizal fungi improve growth, essential oil, secondary metabolism, and yield of tobacco (Nicotiana tabacum L.) under drought stress conditions. Environmental Science and Pollution Research 28:45276-45295, doi:10.1007/s11356-021-13755-3.

Brundrett, M., Bougher, N., Deu, B., Grove, T. and Majalaczuk, N. 1996. Working with Mycorrhizas in Forestry and Agriculture. Canberra (Australia): Australian Centre for International Agriculture Research.

Collins, S., Martins, X., Mitchell, A., Teshome, A. and Arnason, J.T. 2007. Fataluku medicinal ethnobotany and the East Timorese military resistance. Journal of Ethnobiology and Ethnomedicine 3(5):1-10, doi:10.1186/1746-4269-3-5.

Dayan, M.dP., Rosalinda, S.R. and Bandian, D.B. 2007. Indigenous forest tree Species in Laguna Province. DENR Recommends 15b.

Duryea, M.L. and Brown, B.N. 1991. Seedling physiology and reforestation success. Proceeding of the physiology working group Technical Session. Dr. W. Juck Publisher: 77-114. Boston, doi:10.1007/978-94-009-6137-1_5.

Evelin, H., Devi, T.S., Gupta, S. and Kapoor, R. 2019. Mitigation of salinity stress in plants by arbuscular mycorrhizal symbiosis: current understanding and new challenges. Frontier in Plant Science 10:470, doi:10.3389/fpls.2019.00470.

Fagbola, O., Osonubi, O., Mulongoy, K. and Odunfa, S.A. 2001. Effects of drought stress and arbuscular mycorrhiza on the growth of Gliricidia sepium (Jacq). Walp, and Leucaena leucocephala (Lam.) de Wit. in simulated eroded soil conditions. Mycorrhiza 11:215-223, doi:10.1007/s005720100114.

Fougnies, S., Renciot, S., Muller, F., Plenchette, C., Prin, Y., Faria, S.Md., Bouvet, J.M,. Sylla. S.Nd., Dreyfus, B. and Ba, A.M. 2007. Arbuscular mycorrhizal colonization and nodulation improve flooding tolerance in Pterocarpus officinalis Jacq. seedlings. Mycorrhiza 17:159-166, doi: 0.1007/s00572-006-0085-2.

Garcia, I., Mendoza, R. and Pomar, M.C. 2008. Deficit and excess of soil water impact on plant growth of Lotus tenuis by affecting nutrient uptake and arbuscular mycorrhizal symbiosis. Plant and Soil 304:117-131, doi:10.1007/s11104-007-9526-8.

Husna, R., Budi, S.W., Mansur, I. and Kusmana, C. 2015. Diversity of arbuscular mycorrhizal fungi in the growth habitat of kayu kuku (Pericopsis mooniana Thw.) in Southeast Sulawesi. Pakistan Journal of Biological Science18(1):1-10, doi:10.3923/pjbs.2015.1.10.

Husna, R., Budi, S.W., Mansur, I. and Kusmana, C. 2016. Growth and nutrient status of kayu kuku [Pericopsis mooniana (Thw.) Thw.] with mycorrhiza in soil media of nickel post-mining site. Pakistan Journal of Biological Sciences 19(4):158- 170, doi:10.3923/pjbs.2016.158.170.

Jadrane, I., Al Feddy, M.N., Dounas, H., Kouisni, L., Aziz, F. and Ouahmane, L. 2021. Inoculation with selected indigenous mycorrhizal complex improves Ceratonia siliqua’s growth and response to drought stress. Saudi Journal of Biological Sciences 28(1):825-832, doi:10.1016/j.sjbs.2020.11.018.

Kivlin, S.N., Christine, V.H. and Treseder, K.K. 2011. Global diversity and distribution of arbuscular mycorrhizal fungi. Soil Biology and Biochemistry 43:2294-2303, doi:10.1016/j.soilbio.2011.07.012.

Kumar, A. and Verma, J.P. 2018. Does plant-Microbe interaction confer stress tolerance in plants?: A review. Microbiological Research 207:41-52, doi:10.1016/j.micres.2017.11.004.

Lambers, H. and Oliveira, R.S. 2019. Plant Physiological Ecology. Springer, Switzerland, doi:10.1007/978-3-030-29639-1.

Lim, T.K.2013. Edible Medicinal and Non-Medicinal Plants: Volume 5, Fruits. Springer, New York pp 754-757, doi:10.1007/978-94-007-5653-3_36.

Liu, T., Sheng, M., Wang, C.Y., Chen, H., Li, Z. and Tang, M. 2015. Impact of arbuscular mycorrhizal fungi on the growth, water status, and photosynthesis of hybrid poplar under drought stress and recovery. Photosynthetica 53(X):1-3, doi:10.1007/s11099-015-0100-y.

Martínez-Alcántara, B., Jover, S., Quiñones ,A., Forner-Giner, M.Ã., Rodrígues-Gamir, J., Legaz. F., Primo-Millo, E. and Iglesias, D.J. 2012. Flooding affects uptake and distribution of carbon and nitrogen in citrus seedlings. Journal of Plant Physiology 169:1150-1157, doi:10.1016/j.jplph.2012.03.016.

Nadeem, M., Li, J., Yahya, M., Sher, A., Ma, C., Wang, X. and Qiu, L. 2019. Research progress and perspective on drought stress in legumes: a review. International Journal of Molecular Science 20:2541, doi:10.3390/ijms20102541.

O’Connor, P.J., Smith, S.E. and Smith, F.A. 2001. Arbuscular mycorrhizal associations in the southern Southern Simpson desert. Australian Journal of Botany 49:493-499, doi:10.1071/BT00014.

Pebriansyah, A., Karti, P.D.M.H. and Permana, A.T. 2012. Effect of drought stress and addition of arbuscular mycorrhizal fungi (AMF) on growth and productivity of tropical grasses (Chloris gayana, Paspalum dilatatum, and Paspalum notatum). Pastura 2(1):41-48, doi:10.24843/Pastura.2012.v02.i01.p10.

Pereira, S., Santos, M., Leal, I., Tabarelli, M. and Santos, M.G. 2021. Arbuscular mycorrhizal inoculation increases drought tolerance and survival of Cenostigma microphyllum seedlings in a seasonally dry tropical forest. Forest Ecology and Management 492:119213, doi:10.1016/j.foreco.2021.119213.

Raghavamma, S.T.V., Rao, N.R., Sambasiva-Rao. K.R.S.S. and Rao, G.D. 2011. In vitro antioxidant potential of crude extract from leaves of Nauclea orientalis Linn. Journal of Pharmacy Research 4(5):1548-1549.

Rillig, M., Wright, S.F., Shaw, M.R. and Field, C.B. 2002. Artificial climate warming positively affects arbuscular mycorrhizae but decreases soil aggregate water stability in an annual grassland. Oikos 97:52-58, doi:10.1034/j.1600-0706.2002.970105.x.

Schüβler, A., Schwarzott, D. and Walker, C. 2001. A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycological Research 105:1413-1421, doi:10.1017/S0953756201005196.

Seleiman, M.F., Al-Suhaibani, N., Ali, N., Akmal, M., Alotaibi, M., Refay, Y., Dindaroglu, T., Abdul-Wajid, H.H. and Battaglia, M.L. 2021. Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants 10:259, doi:10.3390/plants10020259.

Sichaem, J., Surapinit, S., Siripong, P., Khumkratok, S., Jong-Aramruang, J. and Tip-Pyang, S. 2010. Two new cytotoxic isomeric indole alkaloids from the roots of Nauclea orientalis. Fitoterapia 81:830-833, doi:10.1016/j.fitote.2010.05.004.

Smith, S.E. and Read, D.J. 2008. Mycorrhizal Symbiosis. Third ed. USA (ID) : Academic Press.

Spatafora, J.W., Chang, Y., Benny, G.L., Lazarus, K., Smith, M.E., Berbee, M.L., Bonito, G., Corradi, N., Grigoriev IV, Gryganskyi, A., James, T.Y., O'Donnell, K., Roberson, R.W., Taylor, T.N., Uehling, J., Vilgalys, R., White, M.M and Stajich, J.E. 2016. A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 108:1028-1046, doi: 10.3852/16-042.

Symanczik, S., Lehmann, M.F., Wiemken, A., Thomas, B. and Pierre-Emmanuel, C. 2018. Effects of two contrasted arbuscular mycorrhizal fungal isolates on nutrient uptake by Sorghum bicolor under drought. Mycorrhiza 28:779-785, doi:10.1007/s00572-018-0853-9.

Tedersoo, L., Sánchez-Ramírez, S., Kõljalg, U., Bahram, M., Döring, M., Schigel, D.S., May, T., Ryberg, M. and Abarenkov, K. 2018. High-level classification of the fungi and a tool for evolutionary ecological analyses. Fungal Divers 90:135-159, doi:10.1007/s13225-018-0401-0.

Tuheteru, F.D. and Wu, Q.S. 2017. Arbuscular mycorrhizal fungi and tolerance of waterlogging stress in plants. Springer. Singapore, doi:10.1007/978-981-10-4115-0_3.

Tuheteru, F.D., Arif, A., Husna, Mansur, I., Tuheteru, E.J., Jusniar, Basrudin, Albasri, Hadijah, M.H. and Karepesina, S. 2020. Arbuscular mycorrhizal fungal inoculation improves Nauclea orientalis L. growth and phosphorus uptake in gold mine tailing soil media. Journal of Degraded and Mining Lands Management 7(3):2193-2200, doi:10.15243/jdmlm.2020.073.2193.

Tuheteru, F.D., Arif, A., Widiastuti, E. and Rahmawati N. 2017. Heavy metal uptake by local arbuskula mycorrhizal fungi in Nauclea orientalis L. and potential for phytoremediation of serpentine soils. Journal of Forestry Science 11:76-84, doi:10.22146/jik.24902.

Tuheteru, F.D., Kusmana, C., Mansur, I. and Iskandar. 2015. Response of lonkida (Nauclea orientalis L.) towards mycorrhizal inoculums in waterlogged conditions. Biotropia 22(1):61-71, doi:10.11598/btb.2015.22.1.416.

Tuheteru, F.D., Kusmana, C., Mansur, I. and Iskandar. 2014. Fruit characteristics and morpho-physiological quality of lonkida (Nauclea orientalis L.) seeds from natural habitats in Southeast Sulawesi. Jurnal Pemuliaan Tanaman Hutan 8(3):152-170 (in Indonesian).

Van Sanh, N. and Duy, C.N. 2009. Study on local community institutions to cope with the flood situation of the Mekong Region. The Sustainable Mekong Research Network.

Wu, Q.S., He, J.D., Srivastava, A.K., Zou, Y.N. and Kuca, K. 2019. Mycorrhizas enhance drought tolerance of citrus by altering root fatty acid compositions and their saturation levels. Tree Physiology 39:1149-1158, doi:10.1093/treephys/tpz039.

Wu, Q.S., Zou, Y.N. and Huang, Y.M. 2013. The arbuscular mycorrhizal fungus Diversispora spurca ameliorates effects of waterlogging on growth, root system architecture and antioxidant enzyme activities of citrus seedlings. Fungal Ecology 6:37-43, doi:10.1016/j.funeco.2012.09.002.

Zhang, F., Zou, Y.N. and Wu, Q.S. 2018. Quantitative estimation of water uptake by mycorrhizal extraradical hyphae in citrus under drought stress. Scientia Horticulturae 229:132-136, doi:10.1016/j.scienta.2017.10.038.

Zhang, Z., Zhang, J., Xu, G., Zhou, L. and Li, Y. 2019. Arbuscular mycorrhizal fungi improve the growth and drought tolerance of Zenia insignis seedlings under drought stress. New Forests 50:593-604, doi:10.1007/s11056-018-9681-1.

Zou, Y.N., Srivastava, A.K., Wu, Q.S. and Huang, Y.M. 2014. Increased tolerance of trifoliate orange (Poncirus trifoliata) seedlings to waterlogging after inoculation with arbuscular mycorrhizal fungi. The Journal of Animal and Plant Sciences 24(5):1415-1420.








How to Cite

Tuheteru, F. D., Arif, A., Husna, H., Basrudin, B., Albasri, A., Mansur, I., Turjaman, M., Hadijah, M. H., Rumambi, A., Prasetya, B., & Male, A. R. (2022). Tolerance of lonkida (Nauclea orientalis L.) seedlings inoculated with mycorrhizae against drought and waterlogging stress. Journal of Degraded and Mining Lands Management, 9(4), 3725–3732.



Research Article

Most read articles by the same author(s)