Utilization of hazardous waste of black dross aluminum: processing and application-a review

Authors

  • Maya Lukita IPB University
  • Zaenal Abidin IPB University
  • Etty Riani IPB University
  • Ahyar Ismail IPB University

DOI:

https://doi.org/10.15243/jdmlm.2022.092.3265

Keywords:

aluminum black dross, hazardous waste, waste recovery, waste utilization

Abstract

Aluminum black dross is produced by the secondary smelting process of aluminum. Aluminum black dross is classified as hazardous waste because it is reactive with water and produces substances and gases that are harmful to humans and the environment. Generally, aluminum black dross is managed by landfill method, but because it is produced in large amounts every year, the aluminum black dross needs to be utilized to reduce the impact on the environment. Aluminum black dross consists of large amounts of metal oxide and salts. The amount of metal oxide content in aluminum black dross can be used as raw material. This paper review types of processes for utilizing black dross aluminum as raw material in value-added products. aluminum black dross can be used as alumina, adsorbent, zeolite, composites, geopolymers, refractories, and fillers. By utilizing aluminum black dross waste into various products that have economic value, besides being able to protect the environment, it can also reduce environmental resource use.

References

M.A., Jaafar, J., Hubadillah, S.K. and Tai, Z.S. 2019a. Pretreated aluminum dross waste as a source of inexpensive alumina-spinel composite ceramic hollow fiber membrane for pretreatment of oily saline produced water. Ceramics International 45(2):2069-2078, doi:10.1016/j.ceramint.2018.10.110.

Aziz, M.H.A., Othman, M.H.D., Ismail, A.F., Rahman, M.A., Jaafar, J., Hubadillah, S.K. and Cheng, T.Z. 2019b. Fabrication of low-cost ceramic hollow fiber membranes from aluminum dross waste for water purification. Malaysian Journal of Fundamental Applied Science 15(4):483-488, doi:10.11113/mjfas.v15n4.1210.

Cao, Y., Wang, Z., Wang, J. and Li, G. 2019. Multi-stage electrostatic separation for recovering aluminum from fine granules of black dross. Journal of Wuhan University of Technology Materials Science Edition 34(4):925-931, doi:10.1007/s11595-019-2139-2.

Chargui, F., Hamidouche, M., Belhouchet, H., Jorand, Y., Doufnoune, R. and Fantozzi, G. 2018. Mullite fabrication from natural kaolin and aluminium slag. Boletín de la Sociedad Española de Cerámica y Vidrio 57(4):169-177, doi:10.1016/j.bsecv.2018.01.001.

Chobtham, C. and Kongkarat, S. 2020. Synthesis of hercynite from aluminum dross at 1550°C: Implication for industrial waste recycling. Materials Science Forum 977:223-228, doi:10.4028/ www.scientific.net/ msf.977.223.

Ewais, E.M.M. and Besisa, N.H.A. 2018. Tailoring of magnesium aluminum titanate-based ceramics from aluminum dross. Materials & Design 141:110-119, doi:10.1016/j.matdes.2017.12.027.

Font, A., Soriano, L., Monzó, J., Moraes, J.C.B., Borrachero, M.V. and Payá, J. 2020. Salt slag recycled by-products in high insulation alternative environmentally friendly cellular concrete manufacturing. Construction and Building Materials 231:20 January 2020, 117114, doi:10.1016/j.conbuildmat.2019.117114.

Foo, C.T., Salleh, M.A.M., Ying, K.K. and Matori, K.A. 2019. Mineralogy and thermal expansion study of mullite-based ceramics synthesized from coal fly ash and aluminum dross industrial wastes. Ceramics International 45(6):7488-7494, doi:10.1016/ J.CERAMINT.2019.01.041.

Gil, A. and Korili, S.A. 2016. Management and valorization of aluminum saline slags: Current status and future trends. Chemical Engineering Journal 289:74-84, doi:10.1016/j.cej.2015.12.069.

Gil, A., Arrieta, E., Vicente, M.A. and Korili, S.A. 2018. Synthesis and CO2 adsorption properties of hydrotalcite-like compounds prepared from aluminum saline slag wastes. Chemical Engineering Journal 334:1341-1350, doi:10.1016/j.cej.2017.11.100.

Jadhav, A. and Kakade, V. 2019. Study of aluminum dross and ordinary portland cement modified cold bituminous emulsion mix. Proceedings of Institution of Civil Engineers: Construction Materials 172:164-169, doi:10.1680/jcoma.17.00050.

Leiva, C., Luna-Galiano, Y., Arenas, C., Alonso-Fariñas, B. and Fernández-Pereira, C. 2019. A porous geopolymer based on aluminum-waste with acoustic properties. Waste Management 95:504-512, doi:10.1016/ j.wasman.2019.06.042.

López-Delgado, A., Robla, J.I., Padilla, I., López-Andrés, S. and Romero, M. 2020. Zero-waste process for the transformation of a hazardous aluminum waste into a raw material to obtain zeolites. Journal of Cleaner Production 255(20):120178, doi:10.1016/ j.jclepro.2020.120178.

Mahinroosta, M. and Allahverdi, A. 2018. A promising green process for synthesis of high purity activated-alumina nanopowder from secondary aluminum dross. Journal of Cleaner Production 179:93-102, doi:10.1016/j.jclepro.2018.01.079.

Mahinroosta, M., Allahverdi, A., Dong, P. and Bassim, N. 2019. Green template-free synthesis and characterization of mesoporous alumina as a high value-added product in aluminum black dross recycling strategy. Journal of Alloys and Compounds 792:161-169, doi:10.1016/j.jallcom.2019.04.009.

Nduka, D.O., Ede, A.N., Olofinnade, O.M. and Ajao, A.M. 2020. Mechanical and water absorption properties of normal strength concrete (NSC) containing secondary aluminum dross (SAD). International Journal of Engineering Research in Africa 47:1-13, doi:10.4028/www.scientific.net/JERA.47.1.

Nguyen, T.H., Nguyen, T.T.N. and Lee, M.S. 2018. Hydrochloric acid leaching behavior of mechanically activated black dross. Journal Korean Institue of Resources Recycling 27(3):78-85, doi:10.7844/kirr.2018.27.3.78.

Nguyen, T.T.N. and Lee, M.S. 2019a. Purification of the sodium hydroxide leaching solution of black dross by removal of silicate (IV) with polyacrylamide (PAM). Mineral Processing and Extractive Metallurgy Review 41:1-11, doi:10.1080/08827508.2019.1657862.

Nguyen, T.T.N. and Lee, M.S. 2019b. The removal of silicate (IV) by adsorption onto hydrocalumite from the sodium hydroxide leaching solution of black dross. Processes 7(9):1-12, doi:10.3390/pr7090612.

Nguyen, T.T.N., Lee, M.S. 2019c. Recovery of alumina from sodium hydroxide leaching solution by precipitation with hydrogen peroxide. Journal Korean Institue of Resources Recycling 28(4):23-29, doi:10.7844/kirr.2019.28.4.23.

Nguyen, T.T.N., Lee, M.S. 2019d. Synthesis of magnesium aluminate spinel powder from the purified sodium hydroxide leaching solution of black dross. Processes 7(9):612, doi:10.3390/pr7090612.

Panditharadhya, B.J., Sampath, V., Mulangi, R.H. and Shankar, A.U.R. 2018. Mechanical properties of pavement quality concrete with secondary aluminium dross as partial replacement for ordinary portland cement. IOP Conference Series: Materials Science and Engineering 431:1-9, doi:10.1088/1757-899X/431/3/032011.

Ramaswamy, P., Ranjit, S., Bhattacharjee, S. and Gomes, S.A. 2019a. Synthesis of high temperature (1150 °C) resistant materials after extraction of oxides of Al and Mg from aluminum dross. Materials Today: Proceedings 19: 670-675, doi:10.1016/j.matpr.2019.07.751.

Ramaswamy, P., Tilleti, P., Bhattacharjee, S., Pinto, R. and Gomes, S.A. 2019b. Synthesis of value added refractories from aluminium dross and zirconia composites. Materials Today: Proceedings 22:1264-1273, doi:10.1016/j.matpr.2020.01.419.

Santamaría, L., López-Aizpún, M., García-Padial, M., Vicente, M.A., Korili, S.A. and Gil, A. 2020. Zn-Ti-Al layered double hydroxides synthesized from aluminum saline slag wastes as efficient drug adsorbents. Applied Clay Science 187:1-14, doi:10.1016/j.clay.2020.105486.

Sayehi, M., Tounsi, H., Garbarino, G., Riani, P. and Busca, G. 2020. Reutilization of silicon and aluminum containing wastes in the perspective of the preparation of SiO2-Al2O3 based porous materials for adsorbents and catalysts. Waste Management 103:146-158, doi:10.1016/j.wasman.2019.12.013.

Taha, M.A., Nassar, A.H. and Zawrah, M.F. 2020. In-situ formation of composite having hard outer layer based on aluminum dross reinforced by SiC and TiO2. Construction and Building Materials 248:1-9, doi:10.1016/j.conbuildmat.2020.118638.

Tripathy, A.K., Mahalik, S., Sarangi, C.K., Tripathy, B.C., Sanjay, K. and Bhattacharya, I.N. 2019. A pyro-hydrometallurgical process for the recovery of alumina from waste aluminium dross. Minerals Engineering 137:181-186, doi:10.1016/j.mineng.2019.04.009.

Tsakiridis, P.E. 2012. Aluminium salt slag characterization and utilization - A review. Journal of Hazardous Materials 217-218:1-10, doi:10.1016/ j.jhazmat.2012.03.052.

Udvardi, B., Géber, R. and Kocserha, I. 2019. Investigation of aluminum dross as a potential asphalt filler. International Journal of Engineering and Management Sciences 4(1):445-451, doi:10.21791/IJEMS.2019.1.55.

Yoldi, M., Fuentes-Ordoñez, E.G., Korili, S.A. and Gil, A. 2019. Efficient recovery of aluminum from saline slag wastes. Minerals Engineering 140:1-8, doi:10.1016/j.mineng.2019.105884.

Yoldi, M., Fuentes-Ordoñez, E.G., Korili, S.A. and Gil, A. 2020. Zeolite synthesis from aluminum saline slag waste. Powder Technology 366:175-184, doi:10.1016/j.powtec.2020.02.069.

Yongvanich, N., Emtip, B., Hengprayoon, B. and Jankat, E. 2018. Synthesis of spinel color pigments from aluminum dross waste. Key Engineering Materials 766:282-287, doi:10.4028/www.scientific.net/KEM.766.282.

Zawrah, M.F., Ghanaym, E.E., Sadek, H.E.H., El Defrawy, S.A. and Ali, O.A.M. 2019. Synthesis, characterization and sinterability of pure and Ni-doped nano layered double hydroxides from aluminum dross. Ceramics International.45(14):17598-17610, doi:10.1016/ j.ceramint.2019.05.325.

Zawrah, M.F., Taha, M.A. and Abo Mostafa, H. 2018. In-situ formation of Al2O3/Al core-shell from waste material: production of porous composite improved by graphene. Ceramics International 44(9):10693-10699, doi:10.1016/j.ceramint.2018.03.101.

Downloads

Submitted

18-09-2021

Accepted

01-11-2021

Published

01-01-2022

How to Cite

Lukita, M., Abidin, Z., Riani, E., & Ismail, A. (2022). Utilization of hazardous waste of black dross aluminum: processing and application-a review. Journal of Degraded and Mining Lands Management, 9(2), 3265–3271. https://doi.org/10.15243/jdmlm.2022.092.3265

Issue

Section

Research Article