The growth response of pokem (Setaria italica L.) inoculated with arbuscular mycorrhizal fungi (AMF) from tailings area
DOI:
https://doi.org/10.15243/jdmlm.2021.084.2873Keywords:
AMF, Claroideoglomus, growth of plant, S. italica, tailingsAbstract
The purpose of this research was to study the growth response of pokem (Setaria italica), which was inoculated by the arbuscular mycorrhizal fungi (AMF) from the tailings area. The method used in this research was a completely randomized design of factorial pattern. The factors consisted of AMF types (M)(M0: non-mycorrhizal, M1: Claroideoglomus etunicatum BGR, M2: C. lamellosum B1107S, M3: C. etunicatum L3101D), and inoculum density (I) (I: 5 g, II: 10 g per pot of planting media) with 8 replicates. The source of inoculum C. lamellosum B1107S and C. etunicatum L3101D originated from tailings in the gold mining area of Timika. The results showed that inoculation of C. etunicatum L3101D could increase the plant growth better than C. etunicatum BGR and C. lamellosum B1107S. Significant growth occurred on the parameters of the height of the plants, leaf area, dry weight and fresh weight of the plants, relative growth rate, and phosphorus absorption by the plants. The amount of nitrogen tended to decrease with AMF treatment, but it was not significant, whereas K has insiginificantly increased. The propagule density treatment increased plant growth on all parameters. The best growth occurred if the type C. etunicatum L3101D was inoculated with 10 g of propagule per planting media.References
Begum, N., Qin, C., Ahanger, M.A., Raza, S., Khan, M.I., Ashraf, M., Ahmed, N. and Zhang, L. 2019. Role of arbuscular mycorrhizal fungi in plant growth regulation: Implications in abiotic stress tolerance. Frontier in Plant Science 10: 1068, doi: 10.3389/fpls.2019.01068.
Berruti, A., Lumini, E., Balestrini, R. and Bianciotto, V. 2016. Arbuscular mycorrhizal fungi as natural biofertilizers: Let's benefit from past successes. Frontiers in Microbiology 6: 1559, doi: 10.3389/fmicb.2015.01559.
Birhane, E., Sterck, F.J., Fetene, M., Bongers, F. and Kuyper, T.W. 2012. Arbuscular mycorrhizal fungi enhance photosynthesis, water use efficiency, and growth of Frankincense seedlings under pulsed water availability condition. Oecologia 169(4): 895–904, doi: 10.1007/s00442-012-2258-3.
Brundrett, M.C. and Ashwath, N. 2013. Glomeromycotan mycorrhizal fungi from tropical Australia III. Measuring diversity in natural and disturbed habitats. Plant and Soil 370: 419–433.
Bücking, H., Liepold, E. and Ambilwade, P. 2012. The role of the mycorrhizal symbiosis in nutrient uptake of plants and the regulatory mechanisms underlying these transport process. Plant Science 107–138, doi: 10.5772/52570.
Corkidi, L., Evans, M. and Bohn, J. 2008. An introduction to propagation of arbuscular mycorrhizal fungi in pot cultures for inoculation of native plant nursery stock. Native Plants Journal 9(1): 29–38.
Doley, K. and Jite, P.K. 2012. Response of groundnut (‘JL-24’) cultivar to mycorrhiza inoculation and phosphorous application. Notulae Scientia Biolicae 4(3): 118-125, doi: 10.15835/nsb437809.
Gao, X., Guo, H., Zhang, Q., Guo, H., Zhang, L., Zhang, C., Gou, Z., Liu, Y., Wei, J., Chen, A., Chu, Z. and Zeng, F. 2020. Arbuscular mycorrhizal fungi (AMF) enhanced the growth, yield, fiber quality and phosphorus regulation in upland cotton (Gossypium hirsutum L.). Scientific Reports 10: 2084, doi: 10.1038/s41598-020-59180-3.
Göhre, V. and Paszkowski, U. 2006. Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta 223: 1115–1122, doi: 10.1007/s00425-006-0225-0.
Husna, Tuheteru, F.D., and Arif, A. 2021. The potential of arbuscular mycorrhizal fungi to conserve Kalappia celebica, an endangered endemic legume on gold mine tailings in Sulawesi, Indonesia. Journal of Forestry Research 32(2): 675–682, doi: 10.1007/s11676-020-01097-8.
Ji, K.E., Jin, S.K., Yeon, Y.C. and Kyong L.J. 2010. Morphological variation of foxtail millet (Setaria italica (L.) P. Beauv.) germplasm collected in Korea, China and Pakistan. Korean Journal of Breeding Science 42(2): 181–187.
Khan, A.G. 2006. Mycorrhizoremediation—an enhanced form of phytoremediation. Journal of Zhejiang University Science B 7(7): 503–514, doi: 10.1631/jzus.2006.B0503.
Li, P. and Brutnell, T.P. 2011. Setaria viridis and Setaria italica, model genetic systems for the panicoid grasses. Journal of Experimental Botany 62(9): 3013–3037, doi: 10.1093/jxb/err096.
Li, X., Zhang, J., Gai, J., Cai, X., Christie, P. and Li, X. 2015. Contribution of arbuscular mycorrhizal fungi of sedges to soil aggregation along an altitudinal alpine grassland gradient on the Tibetan Plateau. Environmental Microbiology 17(8): 2841–2857.
Lin, H.S., Liao, G.W., Chiang, C.Y., Kuoh, C.S. and Chang, S.B. 2012. Genetic diversity in the foxtail millet (Setaria italica) germplasm as determined by agronomic traits and microsatellite markers. Australian Journal of Crop Sciences 6(2): 342–349.
Pagano, M.C. and Gupta, V.K. 2016. Overview of the recent advances in mycorrhizal fungi. In: M.C. Pagano (Ed.), Recent Advances on Mycorrhizal Fungi. New York: Springer. pp: 1–13.
Qiao, G., Wen, X.P., Yu, L.F. and Ji, X.B. 2011. The enhancement of drought tolerance for pigeon pea inoculated by arbuscular mycorrhizae fungi. Plant, Soil and Environment 57(12): 541–546.
Rohyadi, A., Noviani, R. and Isnaini, M. 2017. Responses of cowpea genotypes to arbuscular mycorrhiza. Agrivita Journal of Agricultural Science 39(3): 288–295.
Sancayaningsih, R.P., Setiadi, Y., Moeljopawiro, S. and Soedarsono, J. 2000. Effect of propagule density and application method of arbuscular mycorrhizal fungal (AMF) inoculum on infection rates and dry weight of maize plants. Berkala Ilmiah Biologi 2(10): 567–581 (in Indonesian).
Setyaningsih, L., Wulandari, A.S. and Hamim, H. 2018. Growth of typha grass (Typha angustifolia) on gold-mine tailings with application of arbuscular mycorrhiza fungi. Biodiversitas 19(2): 454–459, doi: 10.13057/biodiv/d190218.
Smith, S.E. and Read, D. 2008. Mycorrhizal symbiosis. Third Edition. Academic Press, Elsevier, New York.
Smith, S.E. and Smith, F.A. 2011. Roles of arbuscular mycorrhizas in plant nutrition and growth: New paradigms from cellular to ecosystem scales. Annual Review of Plant Biology 62: 227–250.
Souza, T. 2015. Handbook of arbuscular mycorrhizal fungi. Switzerland: Springer International Publishing.
Suharno, Soetarto, E.S., Sancayaningsih, R.P. and Kasiamdari, R.S. 2017. Association of arbuscular mycorrhizal fungi (AMF) with Brachiaria precumbens (Poaceae) in tailing and its potential to increase the growth of maize (Zea mays). Biodiversitas 18(1): 433–441, doi: 10.13057/biodiv/d180157.
Suharno, Sufaati, S., Agustini, V. and Tanjung, R.H.R. 2015a. The effort of domestication of pokem {Setaria italica (L.) Beauv} by local communities at Numfor Island, Biak Numfor regency in supporting national food security. Jurnal Manusia & Lingkungan 22(1): 73–83, doi: 10.22146/jml.18727.
Suharno, Tanjung, R.H.R. and Sufaati, S. 2020. Arbuscular Mycorrhizal Fungi: Accelerate Mine Land Rehabilitation. UGM Press. Yogyakarta (in Indonesian).
Suharno, Tanjung, R.H.R., Sufaati, S. and Agustini, V. 2015b. Diversity of arbuscular mycorrhizal fungi on pokem [Setaria italica (L.) Beauv.] by trapping method. Jurnal Biologi Papua 7 (2): 68–77 (in Indonesian).
Tarbell, T.J. and Koske, R.E. 2007. Evaluation of commercial arbuscular mycorrhizal inocula in a sand/peat medium. Mycorrhiza 18: 51–56, doi: 10.1007/s00572-007-0152-3.
Treseder, K.K. 2013. The extent of mycorrhizal colonization of roots and its influence on plant growth and phosphorus content. Plant and Soil 371: 1–13, doi: 10.1007/s11104-013-1681-5.
Upadhyaya, H., Panda, S.K., Bhattacharjee, M.K. and Dutta, S. 2010. Role arbuscular mycorrhiza in heavy metal tolerance in plants: Prospect for phytoremediation. Journal of Phytology 2(7): 16–27.
Valsalakumar, N., Ray, J.G. and Potty, V.P. 2007. Arbuscular mycorrhizal fungi associated with green gram in South India. Agronomy Journal 99(5): 1260-1264, doi:10.2134/agronj2006.0367.
Wilujeng, R., Ichriani, G.I., Fahrunsyah, Nuraini, Y. and Handayanto, E. 2020. Combined application of coal fly ash and phosphate-solubilizing fungi improve P availability and plant growth in acid soil. Journal of Degraded and Mining Lands Management 8(1): 2471-2480, doi: 10.15243/jdmlm.2020.081.2471.
Downloads
Submitted
Accepted
Published
How to Cite
Issue
Section
License
Submission of a manuscript implies: that the work described has not been published before (except in the form of an abstract or as part of a published lecture, or thesis) that it is not under consideration for publication elsewhere; that if and when the manuscript is accepted for publication, the authors agree to automatic transfer of the copyright to the publisher.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Scientific Journal by Eko Handayanto is licensed under a Creative Commons Attribution 4.0 International License.
Based on a work at https://ub.ac.id.
Permissions beyond the scope of this license may be available at https://ircmedmind.ub.ac.id/.