Electricity production from palm oil mill effluent (POME) through the integration of a microbial fuel cell and bilirubin oxidase-producing bacteria
DOI:
https://doi.org/10.15243/jdmlm.2023.111.4961Keywords:
Bilirubin oxidase, Bioenergy, Electricity generation, Microbial fuel cell, Palm oil mill effluentAbstract
The microbial fuel cell (MFC) is a device that harnesses microbial metabolism to convert chemical energy into bio-electrical energy. Extensive research has demonstrated its efficacy in both wastewater treatment and power generation applications. This study focused on the integration of a microbial fuel cell (MFC) with a biocathode constructed using the oxidoreductase-producing bacterium Bacillus sp. MCO22 and rice straw as a cost-effective substrate. The MFC utilized palm oil mill effluent (POME) as a chemical energy source for electricity generation in the anodic chamber. The ability of the MFC was evaluated by monitoring biochemical oxygen demand (BOD) activity and electrochemical properties. Post-operation, chemical oxygen demand (COD) and color removal were measured. The results revealed that the MFC with the BOD-based cathode achieved a maximum current density and power density of 0.58±0.01 A/m2 and 0.17±0.00 W/m2, respectively. Furthermore, it exhibited high COD and color removal rates of 95.10±0.10% and 98.53±0.33%, respectively, without requiring an external power supply. This study presents novel insights into utilizing a BOD-producing bacterium as a whole-cell biocatalyst on the MFC cathodic surface for both electricity generation and agricultural wastewater treatment.References
Abdallah, Y.K., Estevez, A.T., Tantawy, D.E.D.M., Ibraheem, A.M. and Khalil, N. 2019. Employing laccase-producing Aspergillus sydowii NYKA 510 as a cathodic biocatalyst in self-sufficient lighting microbial fuel cell. Journal of Microbiology and Biotechnology 29:1861-1872, doi:10.4014/jmb.1907.07031.
Agrawal, K., Shakar, J., Kumar, R. and Verma, P. 2020. Insight into multicopper oxidase laccase from Myrothecium verrucaria ITTCC-8447: a case study using in silico and experimental analysis. Journal of Environmental Science and Health, Part B 55:1048-1060, doi:10.1080/03601234.2020.1812334.
Bashir, M.J.K., Lim, J.H., Amr, S.S.A., Wong, L.P. and Sim, Y.L. 2019. Post treatment of palm oil mill effluent using electro-coagulation-peroxidation (ECP) technique. Journal of Cleaner Production 208:716-727, doi:10.1016/j.jclepro.2018.10.073.
Bayineni, V.K., Suresh, S., Sharma, A. and Kadeppagari, R.K. 2018. Improved bilirubin oxidase productivity of Myrothecium verrucaria and studies on the enzyme overproduced by the mutant strain in the solid-state fermentation. The Journal of General and Applied Microbiology 64:68-75, doi:10.2323/jgam.2017.07.002.
Becerra, D., Barrientos, I., Rodriguez, A., Machuca-Martinez, F. and Ramirez, L. 2020. Treatment of agricultural wastewater with chlorpyrifos by coupling of heterogeneous photocatalysis and anaerobic biological process. Topics in Catalysis 63:1261-1271, doi:10.1007/s11244-020-01281-4.
Chaijak, P., Sukkasem, C., Lertworapreecha, M., Boonsawang, P., Wijasika, S. and Sato, C. 2018. Enhancing electricity generation using a laccase-based microbial fuel cell with yeast Galactomyces reessii on the cathode. Journal of Microbiology and Biotechnology 28:1360-1366, doi:10.4014/jmb.1803.03015.
Durand, F., Gounel, S., Kjaergaard, C.H., Solomon, E.I. and Mano N. 2012a. Bilirubin oxidase from Magnaporthe oryzae: an attractive new enzyme for biotechnological applications. Applied Microbiology and Biotechnology 96:1489-1498, doi:10.1007/s00253-012-3926-2.
Durand, F., Kjaergaard, C.H., Suraniti, E., Gounel, S., Hadt, R.G., Solomon, E.I. and Mano, N. 2012b. Bilirubin oxidase from Bacillus pumilus: A promising enzyme for the elaboration of efficient cathodes in biofuel cells. Biosensor  Bioelectronics 35:140-146, doi:10.1016/j.bios.2012.02.033.
Evans, J.P., Gervasio, D.F. and Pryor, B.M. 2021. A hybrid microbial-enzymatic fuel cell cathode overcomes enzyme inactivation limits in biological fuel cells. Catalysts 11:242, doi:10.3390/catal11020242.
Fareed, A., Zaidi, S.B.A., Ahmad, N., Hafeeez, I., Ali, A. and Ahmad, M.F. 2020. Use of agricultural waste ashes in asphalt bunder and mixture: A sustainable solution to waste management. Construction and Building Materials 259:120575, doi:10.1016/j.conbuildmat.2020.120575.
Feng, H., Wang, M., Wang, B., Zhang, L., Zhang, F., Xu, J., Tian, Y., Gao, J., Peng, R. and Yao Q. 2020. Heterologous expression and characterization of bilirubin oxidase gene from Myrothecium verrucaria in Arabidopsis thaliana. Biotechnology  Biotechnological Equipment 34:421-429, doi:10.1080/13102818.2020.1766378.
Fernando, J.S.R., Premaratne, M., Dinalankara, D.M.S.D., Perera, G.L.N.J. and Ariyadasa, T.U. 2021. Cultivation of microalgae in palm oil mill effluent (POME) for astaxanthin production and simultaneous phycoremediation. Journal of Environmental Chemical Engineering 9:105375, doi:10.1016/j.jece.2021.105375.
Gikas, G.D., Perez-Villanueva, M., Tsioras, M., Alexoudis, C., Perez-Rojas, G., Masis-Mora, M., Lizano-Fallas, V., Rodriguez-Rodriguez, C.E., Vryzas, Z. and Tsihrintzis, V.A. 2018. Low-cost approaches for the removal of terbuthylazine from agricultural wastewater: constructed wetlands and biopurification system. Chemical Engineering Journal 335:647-656, doi:10.1016/j.cej.2017.11.031.
Hariz, H.B., Takriff, M.S., Yasin, N.H.M., Ba-Abbad, M.M. and Hakimi, N.I.N.M. 2020. Potential of the microalgae-based integrated wastewater treatment and CO2 fixation system to treat palm oil mill effluent (POME) by indigenous microalgae; Scenedesmus sp. and Chlorella sp. Journal of Water Process Engineering 32:100907, doi:10.1016/j.jwpe.2019.100907.
Itoh, N., Hayashi, Y., Honda, S., Yamamoto, Y., Tanaka, D. and Toda, H. 2021. Construction and characterization of a functional chimeric laccase from metagenomes suitable as a biocatalyst. AMB express 11:90, doi:10.1186/s13568-021-01248-y.
Kim, B., Jang, N., Lee, M., Jang, J.K. and Chang, I.S. 2021. Microbial fuel cell driven mineral rich wastewater treatment process for circular economy by creating virtuous cycles. Bioresource Technology 320:124254, doi:10.1016/j.biortech.2020.124254.
Lai, C.Y., Wu, C.H., Meng, C.T. and Lin, C.W. 2017. Decolorization of azo dye and generation of electricity by microbial fuel cell with laccase-producing white-rot fungus on cathode. Applied Energy 188:392-398, doi:10.1016/j.apenergy.2016.12.044.
Low, S.S., Bong, K.X., Mubashir, M., Cheng, C.K., Lam, M.K., Lim, J.W., Ho, Y.C., Lee, K.T., Munawaroh, H.S.H. and Show, P.L. 2021. Microalgae cultivation in palm oil mill effluent (POME) treatment and biofuel production. Sustainability 13:3247, doi:10.3390/su13063247.
Mani, P., Kumar, V.T.F., Keshavarz, T., Chandra, T.S. and Kyazze, G. 2018. The role of natural laccase redox mediators in simultaneous dye decolorization and power production in microbial fuel cell. Energies 11:3455, doi:10.3390/en11123455.
Mani, P., Fidal, V.T., Keshavarz, T., Chandra, T.S. and Kyazze, G. 2021. Laccase immobilization strategies for application as a cathode catalyst in microbial fuel cells for azo dye decolorization. Frontier Microbioliology 11:620075, doi:10.3389%2Ffmicb.2020.620075.
Mano, N. 2021. Features and applications of bilirubin oxidases. Applied Microbiology and Biotechnology 96:301-307, doi:10.1007/s00253-012-4312-9.
Martini, M.C., Berini, F., Ausec, L., Casciello, C., Vacca, C., Pistorio, M., Lagares, A., Mandic-Mulec, I., Marinelli, F. and Papa, M.F.D. 2021. Identification and characterization of a novel plasmid-encoded laccase-like multicopper oxidase from Ochrobactrum sp. BF15 isolated from an on-farm bio-purification system. Food Technology and Biotechnology 59: 519-529, doi:10.17113/ftb.59.04.21.7253.
Milner, E.M. and Yu, E.H. 2018. The effect of oxygen mass transfer on aerobic biocathode performance, biofilm growth and distribution in microbial fuel cells. Fuel Cells 18:4-12, doi:10.1002/fuce.201700172.
Mohamad, N.A., Hamzah, S., Harun, M.H.C., Ali, A., Rasit, N., Awang, M., Rafizah, W., Rahman, W.A., Azmi, A.A.A.A.R., Habib, A.A.A., Zahid, M.S.A., Mustofa, A.A.F., Latfi, S.A., Aripin, S.M. and Saad R. 2021. Integration of copperas and calcium hydroxide as a chemical coagulant and coagulant aid for efficient treatment of palm oil mill effluent. Chemosphere 281:130873, doi:10.1016/j.chemosphere.2021.130873.
Nan, X., Lavrnic, S.A. and Toscano, A. 2020. Potential of constructed wetland treatment system for agricultural wastewater reuse under the EU framework. Journal of Environmental Management 275:111219, doi:10.1016/j.jenvman.2020.111219.
Nasrullah, M., Zularisam, A.W., Krishnan, S., Sakinah, M., Singh, L. and Fen Y.W. 2019. High performance electrocoagulation process in treating palm oil mill effluent using high current intensity application. Chinese Journal of Chemical Engineering 27:208-217, doi:10.1016/j.cjche.2018.07.021.
Norhan, M.A., Abdullah, S.R.S., Hassan, H.A. and Ismail, N.I. 2021. A constructed wetland system for bio-polishing palm oil mill effluent and its future research opportunities. Journal of Water Process Engineering 41:102043, doi:10.1016/j.jwpe.2021.102043.
Pal, M. and Sharma, R.K. 2020. Development of wheat straw based catholyte for power generation in microbial fuel cell. Biomass and Bioenergy 138:105591, doi:10.1016/j.biombioe.2020.105591.
Pandit, S., Savia, N., Sonawane, J.M., Sani, A.M., Gupta, P.K., Mathuriya, A.S., Rai, A.K., Jadhav, D.A., Jung, S.P. and Prasad, R. 2021. Agricultural waste and wastewater as feedstock for bioelectricity generation using microbial fuel cells: Recent advances. Fermentation 7:169, doi:10.3390/fermentation7030169.
Picos-corrales, L.A., Sarmiento-Sanchez, J.I., Ruelas-Leyva, J.P., Crini, G., Hermosillo-Ochoa, E. and Gutierrez-Montes, J.A. 2020. Environment-friendly approach toward the treatment of raw agricultural wastewater and river water via flocculation using chitosan and bean straw flour as bioflocculants. ACS Omega 5:3943-3951, doi:10.1021/acsomega.9b03419.
Qing, S., Wang, L.L., Jiang, L.P., Wu, X. and Zhu, J.J. 2022. Live microalgal cell modified by L-cys/Au@carbon dots/bilirubin oxidase layers for enhanced oxygen reduction in a membrane-less biofuel cell. SmartMat 2022:1-13, doi:10.1002/smm2.1100.
Rismani-Yazdi, H., Carver, S.M., Christy, A.D. and Tuovinen, O.H. 2008. Cathodic limitations in microbial fuel cells: An overview. Journal of Power Sources 180:683-694, doi:10.1016/j.jpowsour.2008.02.074.
Roucher, A., Roussarie, E., Gauvin, R.M., Rouhana, J., Gounel, S., Stines-Chaumeil, C., Mano, N. and Backov, R. 2019. Bilirubin oxidase-based silica microcellular robust catalyst for online dyes degradation. Enzyme and Microbiology Technology 120:77-83, doi:10.1016/j.enzmictec.2018.10.004.
Sadeghian, I., Rezaie, Z., Rahmatadadi, S.S., Hemmati, S. 2020. Biochemical insight into a novel thermo/organo tolerant bilirubin oxidase from Thermosediminibacter oceani and its application in dye decolorization. Process Biochemistry 88:38-50, doi:10.1016/j.procbio.2019.09.030.
Sakasegawa, S.I., Ishikawa, H., Imamura, S., Sakuraba, H., Goda, S. and Ohshima, T. 2006. Bilirubin oxidase activity of Bacillus subtilis CotA. Applied and Environmental Microbiology 72:972-975, doi:10.1128%2FAEM.72.1.972-975.2006.
Santoro, C., Babanova, S., Atanassov, P., Li, B., Ieropoulos, I. and Cristiani, P. 2013. High pwer generation by a membraneless single chamber microbial fuel cell (SCMFC) using enzymeatic bilirubin oxidase (Box) air-breathing cathode. Journal of the Electrochemical Society 160:720, doi:10.1149/2.058310jes.
Saputera, W.H., Amri, A.F., Daiyan, R. and Sasongko, D. 2021. Photocatalytic technology for palm oil mill effluent (POME) wastewater treatment: Current progress and future perspective. Materials 14:2846, doi:10.3390/ma14112846.
Sarmin, S., Tarek, M., Roopan, S.M., Cheng, C.K. and Khan, M.M.R. 2021. Significant improvement of power generation through effective substrate-inoculum interaction mechanism in microbial fuel cell. Journal of Power Sources 484:229285, doi:10.1016/j.jpowsour.2020.229285.
Scheiblbrandner, S., Csarman, F. and Ludwig, R. 2022. Cellobiose dehydrogenase in biofuel cells. Current Opinion in Biotechnology 73:205-212, doi:10.1016/j.copbio.2021.08.013.
Solomon, E.I., Sundaram, U.M. and Machonkin, T.E. 1996. Multicopper oxidases and oxygenases. Chemical Reviews 96:2563-2605, doi:10.1021/cr950046o.
Tan, J.T., Yan, X., Huang, W., Engelbrekt, C., Duus, J.O., Ulstrup, J., Xiao, X. and Zhang, J. 2020. Bilirubin oxidase oriented on novel type three-dimensional biocathodes with reduced graphene aggregation for biocathode. Biosensors and Bioelectronics 167:112500, doi:10.1016/j.bios.2020.112500.
Thipraksa, J., Chaijak, P., Michu, P. and Lertworapreecha, M. 2022. Biodegradation and bioelectricity generation of melanoidin in palm oil mill effluent (POME) by laccase-producing bacterial consortium integrated with microbial fuel cell. Biocatalysis and Agricultural Biotechnology 43:102444, doi:10.1016/j.bcab.2022.102444.
Trifonov, A., Stemmer, A. and Tel-Vered, R. 2021. Carbon-coated magnetic nanoparticles as a removable protection layer extending the operation lifetime of bilirubin oxidase-based bioelectrode. Bioelectrochemistry 137:107640, doi:10.1016/j.bioelechem.2020.107640.
Wang, T., Ai, S., Zhou, Y., Luo, Z., Yang, Y., Zhang, J., Huang, H., Luo, S. and Luo, L. 2018. Adsorption of agricultural wastewater contaminated with antibiotics, pesticides and toxic metals by functionalized magnetic nanoparticles. Journal of Environmental Chemical Engineering 6:6468-6478, doi:10.1016/j.jece.2018.10.014.
Downloads
Submitted
Accepted
Published
How to Cite
Issue
Section
License
Submission of a manuscript implies: that the work described has not been published before (except in the form of an abstract or as part of a published lecture, or thesis) that it is not under consideration for publication elsewhere; that if and when the manuscript is accepted for publication, the authors agree to automatic transfer of the copyright to the publisher.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Scientific Journal by Eko Handayanto is licensed under a Creative Commons Attribution 4.0 International License.
Based on a work at https://ub.ac.id.
Permissions beyond the scope of this license may be available at https://ircmedmind.ub.ac.id/.