Evaluation efficiency of salinity tolerant Trichoderma harzianum for alleviation of salinity stress in date palm (Phoenix dactylifera L.)

Authors

  • Naji S Jassim Department of Date Palm Research Centre, University of Basrah, Basrah, Iraq
  • Abdulrahman D Alhamd Department of Date Palm Research Centre, University of Basrah, Basrah, Iraq
  • Muntha Abd-Z Ati Department of Date Palm Research Centre, University of Basrah, Basrah, Iraq

DOI:

https://doi.org/10.15243/jdmlm.2025.122.7327

Keywords:

date palm, plant growth promoting, salinity stress, T. harzianum

Abstract

This study aimed to determine the benefit of a bioagent (Trichoderma hazianum) to lessen the adverse effects of NaCl stress on date palm offshoots (Phoenix dactylifera L.) Varying concentrations of sodium chloride (NaCl) (0, 5, 10, 15, 20, and 25 dS m-1) were used to observe the effect on photosynthetic pigments, antioxidant enzymes, total proline, total phenolics, and hydrogen peroxide in date palm offshoots in the presence and absent of the bioagent T. harzainum. Results of the study showed that enhancing the NaCl concentration from 10-20 dS m-1 did not affect the mycelial growth colony of the T. harzianum in the potato dextrose agar (PDA) medium. The results indicated a significant increase in photosynthetic pigments (chlorophyll and carotenoid), levels of peroxidase and catalase enzymes, total proline, and total phenolic content in the date palm offshoots with the application of T. harzainum. A higher concentration of NaCl leads to a higher level of hydrogen peroxidation. Additionally, salt stimulated the production of antioxidant enzymes such as catalase and peroxidase. The study has indicated a significant reduction in salt stress's negative physiological and biochemical effects on date palm offshoots after applying the bioagent T. harzianum. This study showed that Trichoderma, with its ability to promote plant growth, may be employed to increase the growth of date palm offshoots developing under NaCl stress conditions.

References

Abdullah, T. and Yusnawan, E. 2020. Influence of Trichoderma as a seed treatment on the growth and yield of groundnut under saline environment. Journal of Degraded and Mining Lands Management 8(1):2401-2409. https://doi.org/10.15243/jdmlm.2020.081.2401

Al Hassan, M., Fuertes, M.M., Sanchez, F.J.R., Vicente, O. and Boscaiu, M. 2015. Effects of salt and water stress on plant growth and on accumulation of osmolytes and antioxidant compounds in cherry tomato. Notulae Botanicae Horticulture Agrobotanici Cluj-Napoca 43(1):1-11. https://doi.org/10.15835/nbha4319793

Alexandru, M., Lazar D., Ene, M. and Sesan, T.E. 2013. Influence of some Trichoderma species on photosynthesis intensity and pigments in tomatoes. Rom Biotech Letters 18:8499-8510.

Alfano, G., Ivey, M.L.L., Cakir, C., Bos, J.I.B., Miller, S.A., Madden, L.V., Kamoun, S. and Hoitink, H.A.J. 2007. Systemic modulation of gene expression in tomato by Trichoderma hamatum 382. Phytopathology 97:429-437. https://doi.org/10.1094/PHYTO-97-4-0429

Bates, L., Waldren, S., Teare R.P. and Rapid I.D. 1973. Determination of free proline for water stress studies. Plant and Soil 39:205-207. https://doi.org/10.1007/BF00018060

Cetinel, A.H.S., Gokce, A., Erdik, E., Cetinel, B. and Cetinkaya, N. 2021. The Effect of Trichoderma citrinoviride Treatment under salinity combined to Rhizoctonia solani infection in strawberry (Fragaria ananassa Duch.). Agronomy 11:1589. https://doi.org/10.3390/agronomy11081589

Contreras-Cornejo, X.A., Macías-Rodriguez, L., del-Val, E. and Larsen, J. 2016. Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: Interactions with plants. FEMS Microbiology and Ecology 92:1-17. https://doi.org/10.1093/femsec/fiw036

Das, K. and Roychoudhury, A. 2014. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Frontiers in Environmental Science 2:54. https://doi.org/10.3389/fenvs.2014.00053

Etesami, H. and Maheshwari, D.K. 2018. Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects Ecotoxicology and Environmental Safety 156:225-246. https://doi.org/10.1016/j.ecoenv.2018.03.013

Evelin, H., Thokchom, S., Devi, S.G. and Rupam, K. 2019. Mitigation of salinity stress in plants by arbuscular mycorrhizal symbiosis: Current understanding and new challenges. Frontiers in Plant Science 10(April). https://doi.org/10.3389/fpls.2019.00470

Guler, N.S., Pehlivan, N., Karaoglu, S.A., Guzel, S. and Bozdeveci, A. 2016. Trichoderma atroviride ID20G inoculation ameliorates drought stress-induced damages by improving antioxidant defense maize seedlings. Acta Physiology Plantarum 38:132. https://doi.org/10.1007/s11738-016-2153-3

Gupta, B. and Huang, B. 2014. Mechanism of salinity tolerance in plants: Physiological, biochemical, and molecular characterization. International Journal Genomics 2014:701596. https://doi.org/10.1155/2014/701596

Gupta, S., Schillaci, M., Walker, R., Smith, P.M., Watt, M. and Roessner, U. 2021. Alleviation of salinity stress in plants by endophytic plant-fungal symbiosis: Current knowledge, perspectives and future directions. Plant and Soil 461:219-244. https://doi.org/10.1007/s11104-020-04618-w

Harman, G.E., Doni F., Khadka, R.B. and Uphoff, N. 2019. Endophytic strains of Trichoderma increase plants' photosynthetic capability. Journal of Applied Microbiology 130(2):529-546. https://doi.org/10.1111/jam.14368

Hashem, A., Abd-Allah, E., Alqarawi, A., Al Huqail, A.A. and Egamberdieva, D. 2014. Alleviation of abiotic salt stress in Ochradenus baccatus (Del.) by Trichoderma hamatum (Bonord.) Bainier. Journal of Plant Interaction 9:857-868. https://doi.org/10.1080/17429145.2014.983568

Hoyos-Carvajal, L., Orduz, S. and Bissett, J. 2009. Growth stimulation in bean (Phaseolus vulgaris L.) by Trichoderma. Biological Control 51:409-416. https://doi.org/10.1016/j.biocontrol.2009.07.018

Ikram, M., Ali, N., Jan, G., Iqbal, A., Hamayun, M., Jan, F.G., Hussain, A. and Lee, I.-J. 2019. Trichoderma reesei improved the nutrition status of wheat crop under salt stress. Journal of Plant Interaction 14:590-602. https://doi.org/10.1080/17429145.2019.1684582

Kalleli, F., Aissa, E. and Hamdi, M. 2022. Seed biopriming with endophytic fungi enhances germination, growth, yield and fruit quality of fennel under salinity stress. Journal Research of Environmental Earth Sciences 8(1):1-10.

Kar, M. and Mishra, D. 1976. Catalase, peroxidase, and Polyphenoloxidase activities during Rice leaf senescence. Plant Physiology 57(2):315-319. https://doi.org/10.1104/pp.57.2.315

Killham, K. 1994. Soil Ecology, Cambridge University Press, ISBN: 0 521 43521 8, United Kingdom. https://doi.org/10.1017/9780511623363

Kumar, K., Manigundan, K. and Amaresan, N. 2017. Influence of salt tolerant Trichoderma spp. on growth of maize (Zea mays) under different salinity conditions. Journal of Basic Microbiology 57:141-150. https://doi.org/10.1002/jobm.201600369

Kumar, M., Tak, Y., Potkule, J., Choyal, P., Tomar, M., Meena, N.L. and Kaur, C. 2020. Phenolics as plant protective companion against abiotic stress. In: Plant Phenolics in Sustainable Agriculture, Springer: Berlin/Heidelberg, Germany, pp. 277-308. https://doi.org/10.1007/978-981-15-4890-1_12

Lichtenthaler, H.K. and Buschmann, C. 2001. Chlorophylls and carotenoids: Measurement and characterization by UV-VIS spectroscopy. Current Protocols in Food Analytical Chemistry1:F4. https://doi.org/10.1002/0471142913.faf0403s01

Liu, Z., Xu, N., Pang, Q., Khan, R.A.A., Xu, Q., Wu, C. and Liu, T.A. 2023. Salt-tolerant strain of Trichoderma longibrachiatum HL167 is effective in alleviating salt stress, promoting plant growth, and managing Fusarium wilt disease in cowpea. Journal of Fungi 9: 304. https://doi.org/10.3390/jof9030304

Lo, C.-T. and Lin, C.-Y. 2002. Screening strains of Trichoderma spp. for plant growth enhancement in Taiwan. Journal of Phytopathology 11:215-220.

Long, B.M., Hee, W.Y., Sharwood, R.E., Rae B., Kaines, S., Lim, Y.L., Nguyen, N.D., Massey, B., Bala S., von Caemmerer S., Badger, M.R. and G. Dean Price, G.D. 2018. Carboxysome encapsulation of the CO2- fixing enzyme Rubisco in tobacco chloroplasts. Nature Communications 9:3570. https://doi.org/10.1038/s41467-018-06044-0

Mastouri, F., Bjorkman, T. and Harman, G.E. 2010. Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings. Phytopathology 100:1213-1221. https://doi.org/10.1094/PHYTO-03-10-0091

Othman, Y.A., Tahat, M., Alananbeh, K.M. and Al-Ajlouni, M. 2022. Arbuscular Mycorrhizal Fungi inoculation improves flower yield and postharvest quality component of gerbera grown under different salinity levels. Agriculture 12:978. https://doi.org/10.3390/agriculture12070978

Otlewska, A., Migliore, M., Dybka-Stepien, K., Manfredini, A., Struszczyk-Swita, K., Napoli, R., Bia?kowska, A., Canfora, L. and Pinzari, F. 2020. When salt meddles between plant, soil, and microorganisms. Frontiers of Plant Science 11:1429. https://doi.org/10.3389/fpls.2020.553087

Parida, A.K. and Das, A.B. 2005. Salt tolerance and salinity effect on plants: A review. Ecotoxicology and Environmental Safety 60:324-349. https://doi.org/10.1016/j.ecoenv.2004.06.010

Poosapati, S., Ravulapalli, P.D., Tippirishetty, N., Vishwanathaswamy, D.K. and Chunduri, S. 2014. Selection of high temperature and salinity tolerant Trichoderma isolates with antagonistic activity against Sclerotium rolfsii. Springer Plus 3:1-11. https://doi.org/10.1186/2193-1801-3-641

Rawat, L., Bisht, T., Upadhayay, R. and Kukreti, A. 2016. Selection of salinity tolerant Trichoderma isolates and evaluating their performance in alleviating salinity stress in rice (Oryzae sativa L.). International Journal of National Academic of Agriculture Science 34:1869-1875.

Rawat, L., Singh, Y., Shukla, N. and Kumar, J. 2013. Salinity tolerant Trichoderma harzianum reinforces NaCl tolerance and reduces population dynamics of Fusarium oxysporum f. sp. ciceri in chickpea (Cicer arietinum L.) under salt stress conditions. Archives of Phytopathology and Plant Protection 46:1442-1467. https://doi.org/10.1080/03235408.2013.769316

Samantary, S. 2002. Biochemical responses of Cr-tolerant and Cr-sensitive mung bean cultivars grown on varying levels of chromium. Chemosphere 47(10):1065-1072. https://doi.org/10.1016/S0045-6535(02)00091-7

Santos, C.V. 2004. Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Scientia Horticulturae 103(1):93-99. https://doi.org/10.1016/j.scienta.2004.04.009

Shiade, S.R.G. and Boelt, B. 2020. Seed germination and seedling growth parameters in nine tall fescue varieties under salinity stress. Acta Agriculturae Scandinavica, Section B - Soil & Plant Science 70(2):1-10. https://doi.org/10.1080/09064710.2020.1779338

Shukla, N., Awasthi, R.P. and Rawat, L. 2012. Biochemical and physiological responses of rice (Oryza sativa L.) as influenced by Trichoderma harzianum under drought stress. Plant Physiology and Biochemistry 54:78-88. https://doi.org/10.1016/j.plaphy.2012.02.001

Siddiqui, Z.S., Cho, J.I., Hanpark, S., Kwon, T.R., Ahn, B.O., Lee, G.S., Jeong, M.J., Whankim, K., Konlee, S. and Chulpark, S. 2014. Phenotyping of rice in salt stress environment using high-throughput infrared imaging. Acta Botanica Croatica 73:149-158. https://doi.org/10.2478/botcro-2013-0027

Singh, V., Keswani, C., Ray, S., Upadhyay, R.S., Singh, D.P., Prabha, R., Sarma, B.K. and Singh, H.B. 2019. Isolation and screening of high salinity tolerant Trichoderma spp. with plant growth property and antagonistic activity against various soil borne phytopathogens. Archives Phytopathology and Plant Protection 52:667-680. https://doi.org/10.1080/03235408.2019.1648917

Tabatabai, M.A. 1998. Book Reviews. Handbook of Reference Methods for Plant Analysis. Edited by Yash P. Kalra, CRC Press LLC, 2000 Corporate Blvd., NW, Boca Raton, FL 33431. Hardback, 300 pp., ISBN 1-57444-124-8. https://doi.org/10.2135/cropsci1998

Verma, H., Kumar, D., Kumar, V., Kumari, M., Singh, S.K., Sharma, V.K., Droby, S., Santoyo, G., White, J.F. and Kumar, A. 2021. The potential application of endophytes in management of stress from drought and salinity in crop plants. Microorganism 9:1729. https://doi.org/10.3390/microorganisms9081729

Yusnawan, E. and Inayati, A. 2018. Antifungal activity of crude extracts of Ageratum conyzoides, Cyperus rotundus, and Amaranthus spinosus against rust disease. AGRIVITA Journal of Agriculture Science 40:12. https://doi.org/10.17503/agrivita.v40i0.1889

Zahran Z. 1997. Diversity, adaptation and activity of the bacterial flora in saline environments. Biology and Fertility of Soils 25(3):211-223. https://doi.org/10.1007/s003740050306

Zhang, F., Wang, Y., Liu, C., Chen, F., Ge, H., Tian, F., Yang, T., Ma, K. and Zhang, Y. 2019. Trichoderma harzianum mitigates salt stress in cucumber via multiple responses. Ecotoxicology and Environmental Safety 2019 Apr 15:170:436-445. Epub 2018 Dec 13. https://doi.org/10.1016/j.ecoenv.2018.11.084

Zhang, S., Gan, Y. and Xu, B. 2016. Application of plant-growth-promoting fungi Trichoderma longibrachiatum T6 enhances tolerance of wheat to salt stress through improvement of antioxidative defense system and gene expression. Frontiers in Plant Science 7:1405. https://doi.org/10.3389/fpls.2016.01405

Downloads

Submitted

15-11-2024

Accepted

20-12-2024

Published

01-01-2025

How to Cite

Jassim, N. S., Alhamd, A. D., & Ati, M. A.-Z. (2025). Evaluation efficiency of salinity tolerant Trichoderma harzianum for alleviation of salinity stress in date palm (Phoenix dactylifera L.) . Journal of Degraded and Mining Lands Management, 12(2), 7327–7336. https://doi.org/10.15243/jdmlm.2025.122.7327

Issue

Section

Research Article