Soil quality and yield attributes of soybean on an Ultisol conditioned using cogongrass biochar enriched with nitrogen fertilizer dissolved in seaweed extract

Authors

  • Muhammad Harjoni Kilowasid Department of Agrotechnology, Faculty of Agriculture, Halu Oleo University, Kendari, 93232, Indonesia https://orcid.org/0000-0002-1067-8283
  • Imas Nur Cahyani Department of Agrotechnology, Faculty of Agriculture, Halu Oleo University, Kendari, 93232, Indonesia https://orcid.org/0009-0004-5266-5634
  • Febrianti Department of Agrotechnology, Faculty of Agriculture, Halu Oleo University, Kendari, 93232, Indonesia https://orcid.org/0009-0006-4870-7189
  • Muhammad Aldi Department of Agrotechnology, Faculty of Agriculture, Halu Oleo University, Kendari, 93232, Indonesia https://orcid.org/0009-0007-1934-6131
  • Nini Mila Rahni Department of Agrotechnology, Faculty of Agriculture, Halu Oleo University, Kendari, 93232, Indonesia https://orcid.org/0000-0001-7199-5963
  • Syamsu Alam Department of Soil Science, Faculty of Agriculture, Halu Oleo University, Kendari, 93232, Indonesia https://orcid.org/0000-0002-9205-6655
  • Suaib Department of Agrotechnology, Faculty of Agriculture, Halu Oleo University, Kendari, 93232, Indonesia
  • Teguh Wijayanto Department of Agrotechnology, Faculty of Agriculture, Halu Oleo University, Kendari, 93232, Indonesia https://orcid.org/0000-0002-8932-8250
  • Rachmawati Hasid Department of Agrotechnology, Faculty of Agriculture, Halu Oleo University, Kendari, 93232, Indonesia https://orcid.org/0000-0001-8757-2535
  • Dirvamena Boer Department of Agrotechnology, Faculty of Agriculture, Halu Oleo University, Kendari, 93232, Indonesia https://orcid.org/0009-0006-3482-6080
  • Abdul Madiki Department of Agrotechnology, Faculty of Agriculture, Halu Oleo University, Kendari, 93232, Indonesia
  • Hamirul Hadini Department of Agrotechnology, Faculty of Agriculture, Halu Oleo University, Kendari, 93232, Indonesia
  • Norma Arief Department of Agrotechnology, Faculty of Agriculture, Halu Oleo University, Kendari, 93232, Indonesia
  • Muhidin Department of Agrotechnology, Faculty of Agriculture, Halu Oleo University, Kendari, 93232, Indonesia https://orcid.org/0000-0003-4030-8758
  • Andi Nurmas Department of Agrotechnology, Faculty of Agriculture, Halu Oleo University, Kendari, 93232, Indonesia
  • Makmur Jaya Arma Department of Agrotechnology, Faculty of Agriculture, Halu Oleo University, Kendari, 93232, Indonesia
  • Wa Ode Nuraida Department of Agrotechnology, Faculty of Agriculture, Halu Oleo University, Kendari, 93232, Indonesia

DOI:

https://doi.org/10.15243/jdmlm.2025.122.7353

Keywords:

ammonium, mycorrhizae, nutrient content, root nodule, yield component

Abstract

The soil quality of Ultisol, which is indicated by its chemical properties, arbuscular mycorrhizal fungi (AMF), and root nodules, is important for soybean growth. Cogongrass biochar enriched with N fertilizer solution using solvent from seaweed extract can change the soil quality. Using various seaweed extract solvents, this study sought to (i) test the impact of cogongrass biochar enriched with N fertilizer solution on the soil chemical quality and (ii) examine the effects of soil chemical changes on AMF, root nodules, tissue nutrient content, and soybean yield. The treatments consisted of (i) without biochar (B0), (ii) cogongrass biochar without enrichment (BN0), (iii) cogongrass biochar enriched with urea solution using solvent from extract of Kappapychus alvarezii (BNK), (iv) cogongrass biochar enriched with urea solution using solvent from extract of Sargassum sp. (BNS), and (v) cogongrass biochar enriched with urea solution using solvent extract of Ulva lactuca (BNU). In a randomized block design, each treatment was carried out three times. With or without fertilization, cogongrass biochar improves the chemical fertility of the soil. The increase in NH4+-N and nitrate-N content of the soil in enriched cogongrass biochar was greater than in unenriched. The AMF spores density and root nodules were reduced following enrichment. When biochar was added, there were more pods, pod dry weight, total seeds, and regular seeds per plant. In conclusion, the impact of increasing soil ammonium content led to decreased density of AMF spores, root infections, and root nodules. The level of available P greatly affected the components of soybean yield in Ultisol.

References

Amadou, A., Song, X., Huang, S., Song, A., Tang, Z., Dong, W., Zhao, S., Zhang, B., Yi, K. and Fan, F. 2021. Effects of long-term organic amendment on the fertility of soil, nodulation, yield, and seed quality of soybean in a soybean-wheat rotation system. Journal of Soil and Sediments 21(3):1385-1394. https://doi.org/10.1007/s11368-021-02887-1

Ao, X., Guo, X.H., Zhu, Q., Zhang, H.J., Wang, H.Y., Ma, Z.H., Han, X.R., Zhao. M.H. and Xie, F.T. 2014. Effect of phosphorus fertilization to P uptake and dry matter accumulation in soybean with different P efficiencies. Journal of Integrative Agriculture 13(2):326-334. https://doi.org/10.1016/S2095-3119(13)60390-1

Ashwin, R., Bagyaraj, D.J. and Raju, B.M. 2022. Dual inoculation with rhizobia and arbuscular mycorrhizal fungus improves water stress tolerance and productivity in soybean. Plant Stress 4. https://doi.org/10.1016/j.stress.2022.100084

Bakari, R., Mungai, N., Thuita, M. and Masso, C. 2020. Impact of soil acidity and liming on soybean (Glycine max) nodulation and nitrogen fixation in Kenyan soil. Acta Agriculturae Scandinavica Section B: Soil and Plant Science 70(8):667-678. https://doi.org/10.1080/09064710.2020.1833976

Bedassa, T.A., Abebe, A.T. and Tolessa, A.R. 2022. Tolerance to soil acidity of soybean (Glycine max L.) genotypes under field conditions Southwestern Ethiopia. PLoS ONE 17. https://doi.org/10.1371/journal.pone.0272924

Benbi, D.K. and Brar, K. 2021. Pyrogenic conversion of rice straw and wood to biochar increases aromaticity and carbon accumulation in soil. Carbon Management 12(4):385-397. https://doi.org/10.1080/17583004.2021.1962409

Bolan, N., Sarmah, A.K., Bordoloi, S., Bolan, S., Padhye, L.P., Van Zwieten, L., Sooriyakumar, P., Khan, B.A., Ahmad, M., Solaiman, Z.M., Rinklebe, J., Wang, H., Singh, B.P. and Siddique, K.H.M. 2023a. Soil acidification and the liming potential of biochar. Environmental Pollution 317. https://doi.org/10.1016/j.envpol.2022.120632

Bolan, S., Hou, D., Wang, L., Hale, L., Egamberdieva, D., Tammeorg, P., Li, R., Wang, B., Xu, J., Wang, T., Sun, H., Padhye, L.P., Wang, H., Siddique, K.H.M., Rinklebe, J., Kirkham, M.B. and Bolan, N. 2023b. The potential of biochar as a microbial carrier for agricultural and environmental applications. Science of the Total Environment 886:163968. https://doi.org/10.1016/j.scitotenv.2023.163968

Boyno, G., Demir, S., Danesh, Y.R., Durak, E.D., Çevik, R., Farda, B., Djebaili, R. and Pellegrini, M. 2023. A new technique for the extraction of arbuscular mycorrhizae fungal spores from rhizosphere. Journal of Fungi 9(8). https://doi.org/10.3390/jof9080845

Bryson, C.T., Krutz, L.J., Ervin, G.N., Reddy, K.N. and Byrd, J.D. 2010. Ecotype variability and edaphic characteristics for cogongrass (Imperata cylindrica) populations in Mississippi. Invasive Plant Science and Management 3(3):199-207. https://doi.org/10.1614/IPSM-D-09-00029.1

Buade, R., Chourasiya, D., Prakash, A. and Sharma MP. 2021. Changes in arbuscular mycorrhizal fungal community structure in soybean rhizosphere soil assessed at different growth stages of soybean. Agricultural Research 10(1):32-43. https://doi.org/10.1007/s40003-020-00481-4

Cahyono, O. and Minardi, S. 2022. Effect of fast dissolved phosphorus fertilizer on the growth, seed product, and phosphorus uptake efficiency of soybean (Glycine max L.). AGRIVITA Journal of Agricultural Science 44(1):21-30. https://doi.org/10.17503/agrivita.v44i1.3002

Chen, L., Qin, L., Zhou, L., Li, X., Chen, Z., Su, L., Wang, W., Li, Z., Zhao, J., Yamaji, N., Ma, J.F., Gu, M., Xu, G. and Liao, H. 2019. A nodule-localized phosphate transporter GmPT7 plays an important role in enhancing symbiotic N2 fixation and yield in soybean. New Phytologist 221:2013-2025. https://doi.org/10.1111/nph.15541

Chikoye, D. and Ekeleme, F. 2003. Cover crops for cogongrass (Imperata cylindrica) management and effects on subsequent corn yield. Weed Science 51(5):792-797. https://doi.org/10.1614/P2002-095

Chintala, R., Mollinedo, J., Schumacher, T.E., Malo, D.D. and Julson, J.L. 2014. Effect of biochar on chemical properties of acidic soil. Archives of Agronomy and Soil Science 60(3):393-404. https://doi.org/10.1080/03650340.2013.789870

Cornelissen, G., Jubaedah, Nurida, N.L., Hale, S.E., Martinsen, V., Silvani, L. and Mulder, J. 2018. Fading positive effect of biochar on crop yield and soil acidity during five growth seasons in an Indonesian Ultisol. Science of the Total Environment 634: 561-568. https://doi.org/10.1016/j.scitotenv.2018.03.380

Dai, Z., Wang, Y., Muhammad, N., Yu, X., Xiao, K., Meng, J., Liu, X., Xu, J. and Brookes, P.C. 2014. The effects and mechanisms of soil acidity changes, following incorporation of biochars in three soil differing in initial pH. Soil Science Society of America Journal 78(5):1606-1614. https://doi.org/10.2136/sssaj2013.08.0340

Dalpe, Y. and Seguin, S.M. 2013. Microwave-assisted technology for the clearing and staining of arbuscular mycorrhizal fungi in roots. Mycorrhiza 23(4):333-340. https://doi.org/10.1007/s00572-012-0472-9

Diretorate General of Food Crops. 2022. Annual Report 2021. Ministry of Agriculture Republic of Indonesia, Jakarta (in Indonesian).

Estrada, J.A. and Flory, S.L. 2015. Cogongrass (Imperata cylindrica) invasions in the US: mechanisms, impacts, and threats to biodiversity. Global Ecology and Conservation 3:1-10. https://doi.org/10.1016/j.gecco.2014.10.014

FAO. 2021. Standard operating procedure for soil nitrogen Kjeldahl. 1-21. Food and Agriculture Organization of the United Nations, Rome. https://doi.org/10.18697/ajfand.97.ED097

Fattah, A., Idaryani, Herniwati, Yasin, M., Suriani, S., Salim, Nappu, M.B., Mulia, S., Hannan, M.F.I., Wulanningtyas, H.S., Saenong, S., Dewayani, W., Suriany, Winanda, E., Manwan, S.W., Asaad, M., Warda, Nurjanani, Nurhafsah, Gaffar, A., Sunanto, Fadwiwati, A.Y., Nurdin, M., Dahya, and Ella A. 2024. Performance and morphology of several soybean varieties and responses to pests and diseases in South Sulawesi. Heliyon 10(5). https://doi.org/10.1016/j.heliyon.2024.e25507

Feifel, M., Durner, W., Hohenbrink, T.L. and Peters, A. 2024. Effects of improved water retention by increased soil organic matter on the water balance of arable soil: A numerical analysis. Vadose Zone Journal 23(1). https://doi.org/10.1002/vzj2.20302

Ferguson, B.J., Lin, M.H. and Gresshoff, P.M. 2013. Regulation of legume nodulation by acidic growth conditions. Plant Signaling and Behavior 8(3). https://doi.org/10.4161/psb.23426

Firdu, Z. and Dida, G. 2024. Extraction, identification and mass production of arbuscular mycorrhizal fungi (AMF) from faba bean (Vicia faba L.) rhizosphere soils using maize (Zea mays L.) as a host plant. Heliyon 10:e36838. https://doi.org/10.1016/j.heliyon.2024.e36838

Gan, Y., Stulen, I., van Keulen, H. and Kuiper, P.J.C. 2004. Low concentrations of nitrate and ammonium stimulate nodulation and N2 fixation while inhibiting specific nodulation (nodule DW g?1 root dry weight) and specific N2 fixation (N2 fixed g?1 root dry weight) in soybean. Plant and Soil 258:281-292. https://doi.org/10.1023/B:PLSO.0000016558.32575.17

Gao, S., DeLuca, T.H. and Cleveland, C.C. 2019. Biochar additions alter phosphorus and nitrogen availability in agricultural ecosystems: a meta-analysis. Science of the Total Environment 654:463-472. https://doi.org/10.1016/j.scitotenv.2018.11.124

Gao, Y., Fang, Z., Van Zwieten, L., Bolan, N., Dong, D., Quin, B.F., Meng, J., Li, F., Wu, F., Wang, H. and Chen, W. 2022. A critical review of biochar-based nitrogen fertilizers and their effects on crop production and the environment. Biochar 4(36). https://doi.org/10.1007/s42773-022-00160-3

Haider, F.U., Coulter, J.A., Cai, L., Hussain, S., Cheema, S.A., Wu, J. and Zhang, R. 2022. An overview on biochar production, its implications, and mechanisms of biochar-induced amelioration of soil and plant characteristics. Pedosphere 32(1):107-130. https://doi.org/10.1016/S1002-0160(20)60094-7

Hale, S.E., Nurida, N.L., Jubaedah, Mulder, J., Sørmo, E., Silvani, L., Abiven, S., Joseph, S., Taherymoosavi, S. and Cornelissen, G. 2020. The effect of biochar, lime and ash on maize yield in a long-term field trial in a Ultisol in the humid tropics. Science of the Total Environment Volume 719, 1 June 2020, 137455. https://doi.org/10.1016/j.scitotenv.2020.137455

Hammer, E.C., Balogh-Brunstad, Z., Jakobsen, I., Olsson, P.A., Stipp, S.L.S. and Rillig, M.C. 2014. A mycorrhizal fungus grows on biochar and captures phosphorus from its surfaces. Soil Biology and Biochemistry 77:252-260. https://doi.org/10.1016/j.soilbio.2014.06.012

Han, M., Zhao, Q., Li, W., Ciais, P., Wang, Y.P., Goll, D.S., Zhu, L., Zhao, Z., Wang, J., Wei, Y. and Wu, F. 2022. Global soil organic carbon changes and economic revenues with biochar application. GCB Bioenergy 14(3):364-377. https://doi.org/10.1111/gcbb.12915

Haque, M.A., Barman, D.N., Kim, M.K., Yun, H.D. and Cho, K.M. 2016. Cogongrass (Imperata cylindrica), a potential biomass candidate for bioethanol: Cell wall structural changes enhancing hydrolysis in a mild alkali pretreatment regime. Journal of the Science of Food and Agriculture 96(5):1790-1797. https://doi.org/10.1002/jsfa.7288

Hashem, A., Abd-Allah, E.F., Alqarawi, A.A., Wirth, S. and Egamberdieva, D. 2019. Comparing symbiotic performance and physiological responses of two soybean cultivars to arbuscular mycorrhizal fungi under salt stress. Saudi Journal of Biological Sciences 26(1):38-48. https://doi.org/10.1016/j.sjbs.2016.11.015

Hematimatin, N., Igaz, D., Ayd?n, E. and Horák, J. 2024. Biochar application regulating soil inorganic nitrogen and organic carbon content in cropland in Central Europe: a seven-year field study. Biochar 6(1). https://doi.org/10.1007/s42773-024-00307-4

Hidayat, S., Bakar M.S.A, Ahmed, A., Iryani, D.A., Hussain, M., Jamil, F. and Park, Y.K. 2021. Comprehensive kinetic study of Imperata cylindrica pyrolysis via Asym2sig deconvolution and combined kinetics. Journal of Analytical and Applied Pyrolysis 156:105133. https://doi.org/10.1016/j.jaap.2021.105133

Idris, H., Nurmansyah, Wiratno, Mayura, E., Riska, Budiyanti, T., Gustia, H. and Ramadhan, A.I. 2024. Effect of doses fertilizer and harvest interval on the intensity of leaf spot diseases, production and quality of citronella grass (Cymbopogon nardus L.) essential oils in Ultisol soil. Heliyon 10(5). https://doi.org/10.1016/j.heliyon.2024.e26822

Ishak, L., Teapon, A., Hindersah, R., Nurmayulis, Erwin and Hartati, T.M. 2024. The relationships between soil compaction and soil physical-chemicalbiological characteristics: A case study from volcanic agricultural soil of Entisol and Ultisol in North Maluku Province of Indonesia. Journal of Degraded and Mining Lands Management 11(3):6049-6058. https://doi.org/10.15243/jdmlm.2024.113.6049

Isobe, K., Sugimura, H., Maeshima, T. and Ishii, R. 2008. Distribution of arbuscular mycorrhizal fungi in upland field soil of Japan 2. Spore density of arbuscular mycorrhizal fungi and infection ratio in soybean and maize fields. Plant Production Science 11(2):171-177. https://doi.org/10.1626/pps.11.171

Jerbi, M., Labidi, S., Bahri, B.A., Laruelle, F., Tisserant, B., Jeddi F.B. and Sahraoui, A.L.H. 2021. Soil properties and climate affect arbuscular mycorrhizal fungi and soil microbial communities in Mediterranean rainfed cereal cropping systems. Pedobiologia 87-88. https://doi.org/10.1016/j.pedobi.2021.150748

Jiang, Y., Yang, X., Ni, K., Ma, L., Shi, Y., Wang, Y., Cai, Y., Ma, Q. and Ruan, J. 2023. Nitrogen addition reduces phosphorus availability and induces a shift in soil phosphorus cycling microbial community in a tea (Camellia sinensis L.) plantation. Journal of Environmental Management 342. https://doi.org/10.1016/j.jenvman.2023.118207

Karthik, T. and Jayasri, M.A. 2023. Systematic study on the effect of seaweed fertilizer on the growth and yield of Vigna radiata (L.) R. Wilczek (Mung bean). Journal of Agriculture and Food Research 14. https://doi.org/10.1016/j.jafr.2023.100748

Khosravi, A. and Razavi, S.H. 2021. Therapeutic effects of polyphenols in fermented soybean and black soybean products. Journal of Functional Foods 81. https://doi.org/10.1016/j.jff.2021.104467

Kilowasid, L.M.H., Alam, S., Rakian, T.C., Ansar, N.A., Nurfadillah, Ramdan, N.H., Jaya, I., Suryana, Agustin, W, Rahni, N.M., Mashuni and Safuan, L.O. 2024. Effect of cogongrass biochar enriched with nitrogen fertilizer dissolved in seaweed liquid extract on soil water content of Ultisol. Journal of Degraded and Mining Lands Management 11(3):5585-5596. https://doi.org/10.15243/jdmlm.2024.113.5585

Kilowasid, L.M.H., Manik, D.S., Nevianti, Komang, G.A., Mutmainna, P, Afa, L.O., Rakian, T.C., Hisein, W.S.A., Ramadhan, L.O.A.N. and Alam, S. 2023. The quality of acid soil treated with seaweed (Kappapychus alvarezii) sap enriched biochar from Southeast Sulawesi, Indonesia. Journal of Degraded and Mining Lands Management 10(2):4255-4269. https://doi.org/10.15243/jdmlm.2023.102.4255

Latifah, O., Ahmed, O.H. and Majid, N.M.A. 2018. Soil pH buffering capacity and nitrogen availability following compost application in a tropical acid soil. Compost Science and Utilization 26(1):1-15. https://doi.org/10.1080/1065657X.2017.1329039

Lestari, P.G., Sinaga, A.O.Y., Marpaung, D.S.S., Nurhayu, W. and Oktaviani, I. 2024. Application of organic fertilizer for improving soybean production under acidic stress. Oil Crop Science 9(1):46-52. https://doi.org/10.1016/j.ocsci.2024.02.001

Li, X., Zhang, X., Zhao, Q. and Liao, H. 2023. Genetic improvement of legume roots for adaption to acid soil. Crop Journal 11(4):1022-1033. https://doi.org/10.1016/j.cj.2023.04.002

Li, Y., Pan, F. and Yao, H. 2019. Response of symbiotic and asymbiotic nitrogen-fixing microorganisms to nitrogen fertilizer application. Journal of Soil and Sediments 19(4):1948-1958. https://doi.org/10.1007/s11368-018-2192-z

Li, Z., Unzue-Belmonte, D., Cornelis, J.T., Vander, L.C., Struyf, E., Ronsse, F. and Delvaux, B. 2019. Effects of phytolithic rice-straw biochar, soil buffering capacity and pH on silicon bioavailability. Plant and Soil 438 (1-2):187-203. https://doi.org/10.1007/s11104-019-04013-0

Liang, H., Yang, L., Wu, Q., Meng, C., Zhang, J. and Shen, P. 2023. Regulation of the C:N ratio improves the N-fixing bacteria activity, root growth, and nodule formation of peanut. Journal of Soil Science and Plant Nutrition 23:4596-4608. https://doi.org/10.1007/s42729-023-01376-3

Liang, S.M., Zheng, F.L., Abd-Allah E.F., Muthuramalingam, P., Wu, Q.S. and Hashem, A. 2021. Spatial changes of arbuscular mycorrhizal fungi in peach and their correlation with soil properties. Saudi Journal of Biological Sciences 28(11):6495-6499. https://doi.org/10.1016/j.sjbs.2021.07.024

Lin, C., Wang, Y., Liu, M., Li, Q., Xiao, W. and Song X. 2020. Effects of nitrogen deposition and phosphorus addition on arbuscular mycorrhizal fungi of Chinese fir (Cunninghamia lanceolata). Scientific Reports 10(1). https://doi.org/10.1038/s41598-020-69213-6

Liu, A., Contador, C.A., Fan, K. and Lam H.M. 2018. Interaction and regulation of carbon, nitrogen, and phosphorus metabolisms in root nodules of legumes. Frontiers in Plant Science 871. https://doi.org/10.3389/fpls.2018.01860

Lu, P.P., Zheng, Y., Chen, L., Ji, N.N., Yao, H., Maitra, P., Hu, H.W., Li, X.C. and Guo, L.D. 2020. Irrigation and fertilization effects on arbuscular mycorrhizal fungi depend on growing season in a dryland maize agroecosystem. Pedobiologia 83. https://doi.org/10.1016/j.pedobi.2020.150687

Martins, J.T., Rasmussen, J., Eriksen, J., Arf, O., De Notaris, C. and Moretti, L.G. 2022. Biological N fixation activity in soybean can be estimated based on nodule dry weight and is increased by additional inoculation. Rhizosphere 24. https://doi.org/10.1016/j.rhisph.2022.100589

Masud, M.M., Li, J.Y. and Xu, R.K. 2014. Use of alkaline slag and crop residue biochars to promote base saturation and reduce acidity of an acidic Ultisol. Pedosphere 24(6), December 2014, 791-798. https://doi.org/10.1016/S1002-0160(14)60066-7

Meena, R.S., Vijayakumar, V., Yadav, G.S. and Mitran, T. 2018. Response and interaction of Bradyrhizobium japonicum and arbuscular mycorrhizal fungi in the soybean rhizosphere. Plant Growth Regulation 84(2):207-223. https://doi.org/10.1007/s10725-017-0334-8

Michael, P.S. 2020. Cogon grass biochar amendment and Panicum coloratum planting improve selected properties of sandy soil under humid lowland tropical climatic conditions. Biochar 2(4):489-502. https://doi.org/10.1007/s42773-020-00057-z

Mujtaba, M., Fraceto L.F., Fazeli, M., Mukherjee, S., Savassa, S.M., de Medeiros G.A., Pereira, A.E.S., Mancini, S.D., Lipponen, J. and Vilaplana, F. 2023. Lignocellulosic biomass from agricultural waste to the circular economy: a review with focus on biofuels, biocomposites and bioplastics. Journal of Cleaner Production 402. https://doi.org/10.1016/j.jclepro.2023.136815

Mulyani, A., Sukarman and Hidayat, A. 2009. Prospect of soybean extensification in Indonesia. Jurnal Sumberdaya Lahan 3(1):27-38 (in Indonesian).

Murtaza, G., Ahmed, Z. and Usman, M. 2022. Feedstock type, pyrolysis temperature and acid modification effects on physiochemical attributes of biochar and soil quality. Arabian Journal of Geosciences 15(3). https://doi.org/10.1007/s12517-022-09539-9

Nain, P., Purakayastha,T.J., Sarkar, B., Bhowmik, A., Biswas, S., Kumar, S., Shukla, L., Biswas, D.R., Bandyopadhyay, K.K., Agarwal, B.K. and Saha N.D. 2024. Nitrogen-enriched biochar co-compost for the amelioration of degraded tropical soil. Environmental Technology 45(2):246-261. https://doi.org/10.1080/09593330.2022.2103742

Neuberger, P., Romero, C., Kim, K., Hao, X., McAllister, T.A., Ngo, S., Li, C. and Gorzelak, M.A. 2024. Biochar is colonized by select arbuscular mycorrhizal fungi in agricultural soil. Mycorrhiza 34(3):191-201. https://doi.org/10.1007/s00572-024-01149-5

Ng, J.F., Ahmed, O.H., Jalloh, M.B., Omar, L., Kwan, Y.M., Musah, A.A. and Poong, K.H. 2022. Soil nutrient retention and pH buffering capacity are enhanced by calciprill and sodium silicate. Agronomy 12(1). https://doi.org/10.3390/agronomy12010219

Ngui, M.E., Lin, Y.H., Wei, I.L., Wang, C.C., Xu, Y.Z. and Lin, Y.H. 2024. Effects of the combination of biochar and organic fertilizer on soil properties and agronomic attributes of soybean (Glycine max L.). PLoS ONE 19. https://doi.org/10.1371/journal.pone.0310221

Nguyen, B.T., Nguyen, V.N., Nguyen, T.X., Nguyen, M.H., Dong, H.P., Dinh, G.D., Nguyen N.V. and Pham T.V. 2023. High biochar rates may suppress rice (Oryza sativa) growth by altering the ratios of C to N and available N to P in paddy soil. Soil Use and Management 39(1):415-428. https://doi.org/10.1111/sum.12842

Omidire, N.S., Brye, K.R., English, L., Kekedy-Nagy, L., Greenlee, L., Popp, J. and Roberts, T.L. 2023. Soybean growth and production as affected by struvite as a phosphorus source in eastern Arkansas. Crop Science 63(1):320-335. https://doi.org/10.1002/csc2.20852

Oreoluwa, A.T., Yetunde, A.T., Joseph, U.E., Chengsen, Z. and Hongyan, W. 2020. Effect of biochar and poultry litter application on chemical properties and nutrient availability of an acidic soil. Communications in Soil Science and Plant Analysis 1670-1679. https://doi.org/10.1080/00103624.2020.1791158

Phares, C.A., Atiah, K., Frimpong, K.A., Danquah, A., Asare, A.T. and Aggor-Woananu, S. 2020. Application of biochar and inorganic phosphorus fertilizer influenced rhizosphere soil characteristics, nodule formation and phytoconstituents of cowpea grown on tropical soil. Heliyon 6(10). https://doi.org/10.1016/j.heliyon.2020.e05255

Pires, G.C., de Lima M.E, Zanchi, C.S., de Freitas C.M., de Souza J.M.A., de Camargo T.A., Pacheco, L.P., Wruck, F.J., Carneiro, M.A., Kemmelmeier, K., de Moraes, A. and de Souza E.D. 2021. Arbuscular mycorrhizal fungi in the rhizosphere of soybean in integrated crop livestock systems with intercropping in the pasture phase. Rhizosphere 17 (March 2021). https://doi.org/10.1016/j.rhisph.2020.100270

Pommeresche, R. and Hansen, S. 2017. Examining root nodule activity. Fertil Crop Technical Note 1-4, http://orgprints.org/31344/1/tn-wp5-root-nodules_final_2017.pdf.

Priyandoko, D., Widowati, W., Sari, H., Kusuma, W. and Afifah, E. 2020. Inflammation inhibitory activity of green tea, soybean, and guava extracts during Sars-Cov-2 infection through TNF protein in cytokine storm. Computational Biology and Chemistry 105:107898. https://doi.org/10.1016/j.compbiolchem.2023.107898

Pulunggono, H.B., Kartika, V.W., Nadalia, D., Nurazizah, L.L. and Zulfajrin, M. 2022. Evaluating the changes of Ultisol chemical properties and fertility characteristics due to animal manure amelioration. Journal of Degraded and Mining Lands Management 9(3):3545-3560. https://doi.org/10.15243/jdmlm.2022.093.3545

Qin, P., Wang, T. and Luo, Y. 2022. A review on plant-based proteins from soybean: health benefits and soy product development. Journal of Agriculture and Food Research 7:100265. https://doi.org/10.1016/j.jafr.2021.100265

Rahim, H.U., Allevato, E., Radicetti, E., Carbone, F. and Stazi, S.R. 2023. Research trend of aging biochar for agro-environmental applications: a bibliometric data analysis and visualization of the last decade (2011-2023). Journal of Soil Science and Plant Nutrition 23(4):4843-4855. https://doi.org/10.1007/s42729-023-01456-4

Rakian, T.C., Kilowasid, L.M.H., Afa, L.O., Riskyana, A., Nurazizah, Wijayanti, Y., Bahrun, A., Subair, I., Rahni, N.M., Alam, S., Sarawa and Karimuna, L. 2023. Soil biological quality in rhizosphere, growth, and yield of upland rice grown on acid soil after amended biochar enriched sap of Kappaphycus alvarezii. Biodiversitas 24(12):6780-6792. https://doi.org/10.13057/biodiv/d241241

Rasse, D.P., Weldon, S., Joner, E.J., Joseph, S., Kammann, C.I., Liu, X., O'Toole, A., Pan, G. and Kocatürk-Schumacher, N.P. 2022. Enhancing plant N uptake with biochar-based fertilizers: limitation of sorption and prospects. Plant and Soil 475 (1-2):213-236. https://doi.org/10.1007/s11104-022-05365-w

Rinaldi, J., Arya, N.N., Mahaputra, I.K., Elisabeth, D.A., Resiani, N.M.D., Arsana, I.G.K.D. and Silitonga, T.F. 2023. Production factors, technical, and economic efficiency of soybean (Glycine max L. Merr.) farming in Indonesia. Open Agriculture 8(1). https://doi.org/10.1515/opag-2022-0194

Sarkodee-Addo, E., Yasuda, M., Lee, C.G., Kanasugi, M., Fujii, Y., Omari, R.A., Abebrese, S.O., Bam, R., Asuming-Brempong, S., Dastogeer, K.M.G. and Okazaki, S. 2020. Arbuscular mycorrhizal fungi associated with rice (Oryza sativa L.) in Ghana: effect of regional locations and soil factors on diversity and community assembly. Agronomy 10(4). https://doi.org/10.3390/agronomy10040559

Schaller, J., Wu, B., Amelung, W., Hu, Z., Stein, M., Lehndorff, E. and Obst, M. 2022. Silicon as a potential limiting factor for phosphorus availability in paddy soil. Scientific Reports 12, Article number: 16329 (2022). https://doi.org/10.1038/s41598-022-20805-4

Sefrila, M., Ghulamahdi, M., Purwono, Melati, M. and Mansur, I. 2023. Growth and production of soybean on different inoculant sources of arbuscular mycorrhizal fungi and water saturation periods. Indonesian Journal of Agronomy 51(1):45-53. https://doi.org/10.24831/ija.v51i1.46041

Shah, S.H., Hussain, M.B., Haider, G., Haq, T.U., Zahir, Z.A., Danish, S., Paray, B.A. and Kammann, C. 2023. Acidified manure and nitrogen-enriched biochar showed short-term agronomic benefits on cotton-wheat cropping systems under alkaline arid field conditions. Scientific Reports 2023 Dec 15, 13(1):22504. https://doi.org/10.1038/s41598-023-48996-4

Shetty, R. and Prakash, N.B. 2020. Effect of different biochars on acid soil and growth parameters of rice plants under aluminium toxicity. Scientific Reports 10(1). https://doi.org/10.1038/s41598-020-69262-x

Shi, R.Y., Ni, N., Nkoh, J.N., Dong, Y., Zhao, W.R., Pan, X.Y., Li, J.Y., Xu, R.K. and Qian, W. 2020. Biochar retards Al toxicity to maize (Zea mays L.) during soil acidification: the effects and mechanisms. Science of the Total Environment 719. https://doi.org/10.1016/j.scitotenv.2020.137448

Shi, S., Zhang, Q., Lou, Y., Du, Z., Wang, Q., Hu, N., Wang, Y., Gunina, A. and Song, J. 2021. Soil organic and inorganic carbon sequestration by consecutive biochar application: results from a decade field experiment. Soil Use and Management 37(1):95-103. https://doi.org/10.1111/sum.12655

Sibuea, F.A., Sibuea, M.B. and Safitri, S.A. 2024. Indonesian soybean import in international trade. Jurnal Manajemen dan Agribisnis. https://doi.org/10.17358/jma.21.1.122

Sulieman, S. and Tran, L.S.P. 2015. Phosphorus homeostasis in legume nodules as an adaptive strategy to phosphorus deficiency. Plant Science 239:36-43. https://doi.org/10.1016/j.plantsci.2015.06.018

Susanto, A.H. and Dwiati, M. 2022. Short communication: assessment of cogongrass (Imperata cylindrica (L.) P.Beauv.) genetic variation in Java, Indonesia using atpB-rbcL and trnL-F intergenic spacer. Biodiversitas 23(5):2760-2767. https://doi.org/10.13057/biodiv/d230558

Suzuki, L.E.A.S., Reichert, J.M. and Reinert, D.J. 2013. Degree of compactness, soil physical properties and yield of soybean in six soil under no-tillage. Soil Research 51(4):311-321. https://doi.org/10.1071/SR12306

Verzeaux, J., Nivelle, E., Roger, D., Hirel, B., Dubois, F. and Tetu, T. 2017. Spore density of arbuscular mycorrhizal fungi is fostered by six years of a no-till system and is correlated with environmental parameters in a silty loam soil. Agronomy 7(2). https://doi.org/10.3390/agronomy7020038

Videgain-Marco, M., Marco-Montori, P., Martí-Dalmau, C., Jaizme-Vega, M.D.C., Manyà-Cervelló, J.J. and García-Ramos, F.J. 2021. The effects of biochar on indigenous arbuscular mycorrhizae fungi from agroenvironments. Plants 10(5). https://doi.org/10.3390/plants10050950

Wang, B., Gao, Y., Lai, X., Luo, L., Zhang, X., Hu, D., Shen, Z., Hu, S. and Zhang, L. 2023. The effects of biochar derived from feedstock with different Si and Al concentration on soil N2O and CO2 emissions. Environmental Pollution 317:120731. https://doi.org/10.1016/j.envpol.2022.120731

Wang, C., Luo, D., Zhang, X., Huang, R., Cao, Y., Liu, G., Zhang, Y. and Wang, H. 2022. Biochar-based slow-release of fertilizers for sustainable agriculture: a mini review. Environmental Science and Ecotechnology 10. https://doi.org/10.1016/j.ese.2022.100167

Wen, Z., Chen, Y., Liu, Z. and Meng, J. 2022. Biochar and arbuscular mycorrhizal fungi stimulate rice root growth strategy and soil nutrient availability. European Journal of Soil Biology 113, November-December 2022, 103448. https://doi.org/10.1016/j.ejsobi.2022.103448

Xia, X., Ma, C., Dong, S., Xu, Y. and Gong, Z. 2017. Effects of nitrogen concentrations on nodulation and nitrogenase activity in dual root systems of soybean plants. Soil Science and Plant Nutrition 63(5):470-482. https://doi.org/10.1080/00380768.2017.1370960

Zhan, Y., Wei, Y., Zhang, Z., Zhang, A., Li, Y. and Li, J. 2021. Effects of different C/N ratios on the maturity and microbial quantity of composting with sesame meal and rice straw biochar. Biochar 3(4):557-564. https://doi.org/10.1007/s42773-021-00110-5

Zhang, M., Liu, Y., Wei, Q. and Gou, J. 2021. Biochar enhances the retention capacity of nitrogen fertilizer and affects the diversity of nitrifying functional microbial communities in karst soil of southwest China. Ecotoxicology and Environmental Safety 226. https://doi.org/10.1016/j.ecoenv.2021.112819

Downloads

Submitted

08-11-2024

Accepted

22-12-2024

Published

01-01-2025

How to Cite

Kilowasid, M. H., Cahyani, I. N., Febrianti, Aldi, M., Rahni, N. M., Alam, S., Suaib, Wijayanto, T., Hasid, R., Boer, D., Madiki, A., Hadini, H., Arief, N., Muhidin, Nurmas, A., Arma, M. J., & Nuraida, W. O. (2025). Soil quality and yield attributes of soybean on an Ultisol conditioned using cogongrass biochar enriched with nitrogen fertilizer dissolved in seaweed extract . Journal of Degraded and Mining Lands Management, 12(2), 7353–7368. https://doi.org/10.15243/jdmlm.2025.122.7353

Issue

Section

Research Article

Most read articles by the same author(s)