Water holding capacity, aggregation, respiration, and chemical character of acid soil amended rice straw biochar enriched with different volumes of liquid extract (sap) of Kappapychus alvarezii

Authors

DOI:

https://doi.org/10.15243/jdmlm.2024.121.6949

Keywords:

aluminum, cation, carbon, soil quality, soil management

Abstract

The quality of acidic soil is determined by organic C content produced from rice straw biochar in agriculture. In this context, liquid extract from Kappapychus alvarezii (K-sap) is used as a biochar enrichment agent. Therefore, this research aimed to (i) analyze the character of K-sap enriched rice straw biochar with different volumes, as well as (ii) evaluate the impact on soil water holding capacity, size class distribution, aggregate stability index, respiration rate, and acidic soil chemical characters. The treatment tested was the volume of K-sap kg-1 biochar, namely (i) without biochar, (ii) 0 mL, (iii) 500 mL, (iv) 1,000 mL, and (v) 1,500 mL. Each treatment was repeated three times and placed according to a randomized block design procedure. The area covered by K-sap, pore size, and amorphous degree increased while the pore volume of the biochar surface decreased. The addition of 1,000 mL of K-sap kg-1 biochar released a new peak number associated with the aliphatic and aromatic groups. The K-sap enriched biochar increased the proportion of soil aggregate size of 1-2 mm, water holding capacity, carbon storage, pH, total N, available P and K, exchangeable base cations as well as base saturation. Meanwhile, the concentration of Al3+ and H+ were decreased in the acidic soil solution. The results showed that the performance of rice straw biochar, K-sap volumes, soil chemical quality, water holding capacity, and ability to store carbon of the acidic soil was improved by adding K-sap volume.

References

Adhikari, S., Moon, E. and Timms, W. 2024. Identifying biochar production variables to maximize exchangeable cations and increase nutrient availability in soils. Journal of Cleaner Production 446:141454. https://doi.org/10.1016/j.jclepro.2024.141454

Amelung, W., Meyer, N., Rodionov, A., Knief, C., Aehnelt, M., Bauke, S.L., Biesgen, D., Dultz, S., Guggenberger, G., Jaber, M., Klumpp, E., Kögel-Knabner I., Nischwitz, V., Schweizer, S.A., Wu B., Totsche, K.U. and Lehndorff, E. 2023. Process sequence of soil aggregate formation disentangled through multi-isotope labelling. Geoderma 429. https://doi.org/10.1016/j.geoderma.2022.116226

Arnaut, L. 2021. Chemical Kinetics: From Molecular Structure to Chemical Reactivity. Second Edittion, Elsevier. https://doi.org/10.1016/B978-0-444-64039-0.00026-1

Audette, Y., Congreves, K.A., Schneider, K., Zaro, G.C., Nunes, A.L.P., Zhang, H. and Voroney, R.P. 2021. The effect of agroecosystem management on the distribution of C functional groups in soil organic matter: a review. Biology and Fertility of Soils 57(7):881-894. https://doi.org/10.1007/s00374-021-01580-2

Bajpai, S., Shukla, P.S., Prithiviraj, B., Critchley, A.T. and Nivetha, N. 2024. Editorial: development of next generation bio stimulants for sustainable agriculture. Frontiers in Plant Science 15:8-10. https://doi.org/10.3389/fpls.2024.1383749

Baquy, M.A.-A., Li, J., Jiang, J., Mehmood, K., Shi, R.-Y. and Xu, R.-K. 2018. Critical pH and exchangeable Al of four acidic soils derived from different parent materials for maize crops. Journal of Soils and Sediments 18. https://doi.org/10.1007/s11368-017-1887-x

Basheer, S., Wang, X., Farooque, A.A., Nawaz, R.A., Pang, T. and Neokye, E.O. 2024. A review of greenhouse gas emissions from agricultural soil. Sustainability 16(11):1-18. https://doi.org/10.3390/su16114789

Batista, E.M.C.C., Shultz, J., Matos, T.T.S., Fornari, M.R., Ferreira, T.M., Szpoganicz, B., De Freitas, R.A. and Mangrich, A.S. 2018. Effect of surface and porosity of biochar on water holding capacity aiming indirectly at preservation of the Amazon biome. Scientific Reports 8(1):1-9. https://doi.org/10.1038/s41598-018-28794-z

Benbi, D.K. and Brar, K. 2021. Pyrogenic conversion of rice straw and wood to biochar increases aromaticity and carbon accumulation in soil. Carbon Management 12(4):385-397. https://doi.org/10.1080/17583004.2021.1962409

Bhuyar, P., Sundararaju, S., Rahim, M.H.A., Unpaprom, Y., Maniam, G.P. and Govindan, N. 2021. Antioxidative study of polysaccharides extracted from red (Kappaphycus alvarezii), green (Kappaphycus striatus) and brown (Padina gymnospora) marine macroalgae/seaweed. SN Applied Sciences 3(4):1-9. https://doi.org/10.1007/s42452-021-04477-9

Bolan, N., Sarmah, A.K., Bordoloi, S., Bolan, S., Padhye, L.P., Van Zwieten, L., Sooriyakumar, P., Khan, B.A., Ahmad, M., Solaiman, Z.M., Rinklebe, J., Wang, H., Singh, B.P. and Siddique, K.H.M. 2023. Soil acidification and the liming potential of biochar. Environmental Pollution 317. https://doi.org/10.1016/j.envpol.2022.120632

Castejón-del Pino, R., Cayuela, M.L., Sánchez-García, M. and Sánchez-Monedero, M.A. 2023. Nitrogen availability in biochar-based fertilizers depending on activation treatment and nitrogen source. Waste Management 158:76-83. https://doi.org/10.1016/j.wasman.2023.01.007

Chang, B., Pang, H., Raziq, F., Wang, S., Huang, K.W., Ye, J. and Zhang, H. 2023. Electrochemical reduction of carbon dioxide to multicarbon (C2+) products: challenges and perspectives. Energy and Environmental Science 16(11):4714-4758. https://doi.org/10.1039/D3EE00964E

Cheng, X., Han, H., Zhu, J., Peng, X., Li, B., Liu, H. and Epstein, H. 2021. Forest thinning and organic matter manipulation drives changes in soil respiration in a Larix principis-rupprechtii plantation in China. Soil and Tillage Research 211:104996. https://doi.org/10.1016/j.still.2021.104996

Chew, K.W., Chia, S.R., Yen, H.W., Nomanbhay, S., Ho, Y.C. and Show, P.L. 2019. Transformation of biomass waste into sustainable organic fertilizers. Sustainability 11(8). https://doi.org/10.3390/su11082266

Dengxiao, Z., Hongbin, J., Wenjing, Z., Qingsong, Y., Zhihang, M., Haizhong, W., Wei, R., Shiliang, L. and Daichang, W. 2024. Combined biochar and water-retaining agent application increased soil water retention capacity and maize seedling drought resistance in Fluvisols. Science of The Total Environment 907:167885. https://doi.org/10.1016/j.scitotenv.2023.167885

Don, A., Seidel, F., Leifeld, J., Kätterer, T., Martin, M., Pellerin, S., Emde, D., Seitz, D. and Chenu, C. 2024. Carbon sequestration in soils and climate change mitigation-Definitions and pitfalls. Global Change Biology 30(1). https://doi.org/10.1111/gcb.16983

El-Naggar, A., Awad, Y.M., Tang, X.Y., Liu, C., Niazi, N.K., Jien, S.H., Tsang, D.C., Song, H., Ok, Y.S. and Lee, S.S. 2018. Biochar influences soil carbon pools and facilitates interactions with soil: A field investigation. Land Degradation and Development 29(7):2162-2171. https://doi.org/10.1002/ldr.2896

Elsupikhe, R.F., Shameli, K., Ahmad, M.B., Ibrahim, N.A. and Zainudin, N. 2015. Green sonochemical synthesis of silver nanoparticles at varying concentrations of ?-carrageenan. Nanoscale Research Letters 10(1):1-8. https://doi.org/10.1186/s11671-015-0916-1

Enaime, G. and Lübken, M. 2021. Agricultural waste?based biochar for agronomic applications. Applied Sciences 11(19). https://doi.org/10.3390/app11198914

Fadilah, S., Alimuddin, Pong-Masak, P.R., Santoso, J. and Parenrengi, A. 2016. Growth, morphology and growth related hormone level in Kappaphycus alvarezii produced by mass selection in Gorontalo waters, Indonesia. HAYATI Journal of Biosciences 23(1):29-34. https://doi.org/10.1016/j.hjb.2015.09.004

FAO. 2023. Global soil laboratory network. Standard Operating Procedures for Soil Moisture Content by Gravimetric Method.

Ferdiansyah, R., Abdassah, M., Zainuddin, A., Rachmaniar, R. and Chaerunisaa, A.Y. 2023. Effects of alkaline solvent type and pH on solid physical properties of carrageenan from Eucheuma cottonii. Gels 9(5). https://doi.org/10.3390/gels9050397

Fungo, B., Lehmann, J., Kalbitz, K., Thion?o, M., Okeyo, I., Tenywa, M. and Neufeldt, H. 2017. Aggregate size distribution in a biochar-amended tropical Ultisol under conventional hand-hoe tillage. Soil and Tillage Research 165:190-197. https://doi.org/10.1016/j.still.2016.08.012

Gao, Y., Fang, Z., Van Zwieten, L., Bolan, N., Dong, D., Quin, B.F., Meng, J., Li, F., Wu, F., Wang, H. and Chen, W. 2022. A critical review of biochar-based nitrogen fertilizers and their effects on crop production and the environment. Biochar 4(1):1-19. https://doi.org/10.1007/s42773-022-00160-3

Ghorbani, M., Asadi, H. and Abrishamkesh, S. 2019. Effects of rice husk biochar on selected soil properties and nitrate leaching in loamy sand and clay soil. International Soil and Water Conservation Research 7(3):258-265. https://doi.org/10.1016/j.iswcr.2019.05.005

Grados, D., Kraus, D., Haas, E., Butterbach-Bahl, K., Olesen, J.E. and Abalos, D. 2024. Common agronomic adaptation strategies to climate change may increase soil greenhouse gas emission in Northern Europe. Agricultural and Forest Meteorology 349. https://doi.org/10.1016/j.agrformet.2024.109966

Hafeez, A., Pan, T., Tian, J. and Cai, K. 2022. Modified biochars and their effects on soil quality: A review. Environments 9(5). https://doi.org/10.3390/environments9050060

Halder, M., Ahmad, S.J., Rahman, T., Joardar, J.C., Siddique, M.A.B., Islam, M.S., Islam, M.U., Liu, S., Rabbi, S. and Peng, X. 2023. Effects of straw incorporation and straw-burning on aggregate stability and soil organic carbon in a clay soil of Bangladesh. Geoderma Regional 32:e00620. https://doi.org/10.1016/j.geodrs.2023.e00620

Islam, M.U., Jiang, F., Guo, Z. and Peng, X. 2021. Does biochar application improve soil aggregation? A meta-analysis. Soil and Tillage Research 209:104926. https://doi.org/10.1016/j.still.2020.104926

Jamilatun, S., Pitoyo, J., Amelia, S., Ma'arif, A., Hakika, D.C. and Mufandi, I. 2022. Experimental study on the characterization of pyrolysis products from bagasse (Saccharum officinarum L.): Bio-oil, biochar, and gas products. Indonesian Journal of Science and Technology 7(3):565-582. https://doi.org/10.17509/ijost.v7i3.51566

Jiang, J., Wang, Y.P., Yu, M., Cao, N. and Yan, J. 2018. Soil organic matter is important for acid buffering and reducing aluminum leaching from acidic forest soils. Chemical Geology 501:86-94. https://doi.org/10.1016/j.chemgeo.2018.10.009

Jin, L., Wei, D., Yin, D., Zhou, B., Ding, J.L., Wang, W., Zhang, J., Qiu, S., Zhang, C., Li, Y., An, Z., Gu, J. and Wang, L. 2020. Investigations of the effect of the amount of biochar on soil porosity and aggregation and crop yields on fertilized black soil in northern China. PLoS ONE 15:1-15. https://doi.org/10.1371/journal.pone.0238883

Jindo, K., Mizumoto, H., Sawada, Y., Sanchez-Monedero, M.A. and Sonoki, T. 2014. Physical and chemical characterization of biochars derived from different agricultural residues. Biogeosciences 11(23):6613-6621. https://doi.org/10.5194/bg-11-6613-2014

Jones, D.L., Prabowo, A.M. and Kochian, L.V. 1996. Aluminium-organic acid interactions in acid soils. Plant and Soil 182(2):229-237. https://doi.org/10.1007/BF00029054

Kelly, C.N., Benjamin, J., Calderón, F.C., Mikha, M.M., Rutherford, D.W. and Rostad, C.E. 2017. Incorporation of biochar carbon into stable soil aggregates: the role of clay mineralogy and other soil characteristics. Pedosphere 27(4):694-704. https://doi.org/10.1016/S1002-0160(17)60399-0

Kilowasid, L.M.H., Alam, S., Rakian, T.C., Ansar, N.A., Nurfadillah, Ramdan, N.H., Jaya, I., Suryana, Agustin, W., Rahni, N.M., Mashuni, and Safuan, L.O. 2024. Effect of cogon grass biochar enriched with nitrogen fertilizer dissolved in seaweed liquid extract on soil water content of Ultisol. Journal of Degraded and Mining Lands Management 11(3): 5585-5596. https://doi.org/10.15243/jdmlm.2024.113.5585

Kilowasid, L.M.H., Manik, D.S., Nevianti, Komang, G.A., Mutmainna, P., Afa, L.O., Rakian, T.C., Hisein, W.S.A., Ramadhan, L.O.A.N. and Alam, S. 2023. The quality of acid soils treated with seaweed (Kappapychus alvarezii) sap enriched biochar from Southeast Sulawesi, Indonesia. Journal of Degraded and Mining Lands Management 10(2):4255-4269. https://doi.org/10.15243/jdmlm.2023.102.4255

Kumar, K., Ganesan, K., Selvaraj, K. and Subba Rao, P.V. 2014. Studies on the functional properties of protein concentrate of Kappaphycus alvarezii (Doty) Doty - an edible seaweed. Food Chemistry 153:353-360. https://doi.org/10.1016/j.foodchem.2013.12.058

Li, B., Guo, Y., Liang, F., Liu, W., Wang, Y., Cao, W., Song, H., Chen, J. and Guo, J. 2024. Global integrative meta-analysis of the responses in soil organic carbon stock to biochar amendment. Journal of Environmental Management 351:119745. https://doi.org/10.1016/j.jenvman.2023.119745

Li, K-w., Lu, H-l., Nkoh, J.N. and Xu, R-k. 2023. The important role of surface hydroxyl groups in aluminum activation during phyllosilicate mineral acidification. Chemosphere 313:137570. https://doi.org/10.1016/j.chemosphere.2022.137570

Liu, G., Dai, Z., Liu, X., Dahlgren, R.A. and Xu, J. 2022. Modification of agricultural wastes to improve sorption capacities for pollutant removal from water - a review. Carbon Research 1(1):1-24. https://doi.org/10.1007/s44246-022-00025-1

Lü, S., Feng, C., Gao, C., Wang, X., Xu, X., Bai, X., Gao, N. and Liu, M. 2016. Multifunctional environmental smart fertilizer based on l -aspartic acid for sustained nutrient release. Journal of Agricultural and Food Chemistry 64(24):4965-4974. https://doi.org/10.1021/acs.jafc.6b01133

Luan, H., Gao, W., Huang, S., Tang, J., Li, M., Zhang, H., Chen, X. and Masili?nas, D. 2020. Organic amendment increases soil respiration in a greenhouse vegetable production system through decreasing soil organic carbon recalcitrance and increasing carbon-degrading microbial activity. Journal of Soils and Sediments 20(7):2877-2892. https://doi.org/10.1007/s11368-020-02625-z

Malik, K., Sharma, A., Harikarthik, D., Rani, V., Arya, N., Malik, A., Rani, S., Sangwan, P. and Bhatia, T. 2023. Deciphering the biochemical and functional characterization of rice straw cultivars for industrial applications. Heliyon 9(6):e16339. https://doi.org/10.1016/j.heliyon.2023.e16339

Martiny, T.R., Pacheco, B.S., Pereira, C.M.P., Mansilla, A., Astorga-España, M.S., Dotto, G.L, Moraes, C.C. and Rosa, G.S. 2020. A novel biodegradable film based on ?-carrageenan activated with olive leaves extract. Food Science and Nutrition 8(7):3147-3156. https://doi.org/10.1002/fsn3.1554

Masarin, F., Cedeno, F.R.P., Chavez, E.G.S., De Oliveira, L.E., Gelli, V.C. and Monti, R. 2016. Chemical analysis and biorefinery of red algae Kappaphycus alvarezii for efficient production of glucose from residue of carrageenan extraction process. Biotechnology for Biofuels 9(1):1-12. https://doi.org/10.1186/s13068-016-0535-9

Mohammadi, A., Cowie, A., Mai, T.L.A., De La Rosa, R.A., Brandão, M., Kristiansen, P. and Joseph, S. 2016. Quantifying the greenhouse gas reduction benefits of utilizing straw biochar and enriched biochar. Energy Procedia 97:254-261. https://doi.org/10.1016/j.egypro.2016.10.069

Mokolobate, M. and Haynes, R. 2002. Comparative liming effect of four organic residues applied to an acid soil. Biology and Fertility of Soils 35:79-85. https://doi.org/10.1007/s00374-001-0439-z

Momesso, L., Crusciol, C.A.C., Bossolani, J.W., Moretti, L.G., Leite, M.F.A., Kowalchuk, G.A. and Kuramae, E.E. 2022. Toward more sustainable tropical agriculture with cover crops: soil microbiome responses to nitrogen management. Soil and Tillage Research 224:105507. https://doi.org/10.1016/j.still.2022.105507

Munajad, A., Subroto, C. and Suwarno 2018. Fourier transform infrared (FTIR) spectroscopy analysis of transformer paper in mineral oil-paper composite insulation under accelerated thermal aging. Energies 11(2). https://doi.org/10.3390/en11020364

Mutolib, A., Rahmat, A., Triwisesa, E., Hidayat, H., Hariadi, H., Kurniawan, K., Sutiharni, and Sukamto. 2023. Biochar from agricultural waste for soil amendment candidate under different pyrolysis temperatures. Indonesian Journal of Science and Technology 8(2):243-258. https://doi.org/10.17509/ijost.v8i2.55193

Nandiyanto, A.B.D., Oktiani, R. and Ragadhita, R. 2019. How to read and interpret FTIR spectroscope of organic material. Indonesian Journal of Science and Technology 4(1):97-118. https://doi.org/10.17509/ijost.v4i1.15806

Nardis, B.O., Da Silva Carneiro, J.S., De Souza, I.M.G., De Barros, R.G. and Melo, L.C.A. 2021. Phosphorus recovery using magnesium-enriched biochar and its potential use as fertilizer. Archives of Agronomy and Soil Science 67(8):1017-1033. https://doi.org/10.1080/03650340.2020.1771699

Ndoung, O.C.N., de Figueiredo, C.C. and Ramos, M.L.G. 2021. A scoping review on biochar-based fertilizers: enrichment techniques and agro-environmental application. Heliyon 7(12). https://doi.org/10.1016/j.heliyon.2021.e08473

Obalum, S.E., Uteau-Puschmann, D. and Peth, S. 2019. Reduced tillage and compost effects on soil aggregate stability of a silt-loam Luvisol using different aggregate stability tests. Soil and Tillage Research 189:217-228. https://doi.org/10.1016/j.still.2019.02.002

Petersson, T., Antoniella, G., Chiriacò, M.V., Perugini, L. and Chiti, T. 2024. The misconception of soil organic carbon sequestration notion: When do we achieve climate benefit? Soil Use and Management 40(1):1-7. https://doi.org/10.1111/sum.13009

Phuong, D.T.M., Miyanishi, T., Okayama, T. and Kose, R. 2016. Pore characteristics and adsorption capacities of biochars derived from rice residues as affected by variety and pyrolysis temperature. American Journal of Innovative Research and Applied Sciences 2(5):179-189.

Pituello, C., Ferro, N.D., Francioso, O., Simonetti, G., Berti, A., Piccoli, I., Pisi, A. and Morari, F. 2018. Effects of biochar on the dynamics of aggregate stability in clay and sandy loam soils. European Journal of Soil Science 69(5):827-842. https://doi.org/10.1111/ejss.12676

Purwanto, B.H. and Alam, S. 2020. Impact of intensive agricultural management on carbon and nitrogen dynamics in the humid tropics. Soil Science and Plant Nutrition 66(1):50-59. https://doi.org/10.1080/00380768.2019.1705182

Rakian, T.C., Kilowasid, L.M.H., Afa, L.O., Riskyana, A., Nurazizah, Wijayanti, Y., Bahrun, A., Subair, I., Rahni, N.M, Sarawa, A.S. and Karimuna, L. 2023. Soil biological quality in rhizosphere, growth, and yield of upland rice grown on acid soil after amended biochar enriched sap of Kappaphycus alvarezii. Biodiversity 24(12):6780-6792. https://doi.org/10.13057/biodiv/d241241

Ramírez, P.B., Machado, S., Singh, S., Plunkett, R. and Calderón, F.J. 2023. Addressing the effects of soil organic carbon on water retention in US Pacific Northwest wheat-soil systems. Frontiers in Soil Science 3. https://doi.org/10.3389/fsoil.2023.1233886

Shan, Y. and Riaz, A. 2023. The single and interactive effects of aluminium and low pH, or Ca/Al ratios on red pine seedlings. BMC Research Notes 16(1):1-7. https://doi.org/10.1186/s13104-023-06609-3

Shi, Y., Yu, Y., Chang, E., Wang, R., Hong, Z., Cui, J., Zhang, F., Jiang, J. and Xu, R. 2023. Effect of biochar incorporation on phosphorus supplementation and availability in soil: a review. Journal of Soils and Sediments 23(2):672-686. https://doi.org/10.1007/s11368-022-03359-w

Shu, X., Tian, W., Xiong, S., Zhang, W. and Zhang, Q. 2022. Straw biochar at different pyrolysis temperatures passivates pyrite by promoting electron transfer from biochar to pyrite. Processes 10(10):1-12. https://doi.org/10.3390/pr10102148

Simatupang, N.F., Pong-Masak, P.R., Ratnawati, P., Agusman, Paul, N.A. and Rimmer, M.A. 2021. Growth and product quality of the seaweed Kappaphycus alvarezii from different farming locations in Indonesia. Aquaculture Reports 20. https://doi.org/10.1016/j.aqrep.2021.100685

Soliman, E. and Mansour, M.M. 2024. Enhancing soil organic carbon content and water retention using polyvinyl alcohol cross-linked with chitosan and pectin. Journal of Soil Science and Plant Nutrition 24(1):791-803. https://doi.org/10.1007/s42729-023-01584-x

Song, J., Jin, X., Wang, X.C. and Jin, P. 2019. Preferential binding properties of carboxyl and hydroxyl groups with aluminium salts for humic acid removal. Chemosphere 234:478-487. https://doi.org/10.1016/j.chemosphere.2019.06.107

Stocking, M.A. 2003. Tropical soils and food security: the next 50 years. Science 302(5649):1356-1359. https://doi.org/10.1126/science.1088579

Sudhakar, M.P., Peter, D.M. and Dharani, G. 2021. Studies on the development and characterization of bioplastic film from the red seaweed (Kappaphycus alvarezii). Environmental Science and Pollution Research 28(26):33899-33913. https://doi.org/10.1007/s11356-020-10010-z

Um-E-laila, Hussain, A., Nazir, A., Shafiq, M. and Firdaus-E-bareen. 2021. Potential application of biochar composite derived from rice straw and animal bones to improve plant growth. Sustainability 13(19). https://doi.org/10.3390/su131911104

van Tol de Castro, T.A., Tavares, O. C. H., de Oliveira Torchia, D. F., Pereira, E.G., Rodrigues, N.F., Santos, L.A.... and García, A.C. 2024. Regulation of growth and stress metabolism in rice plants through foliar and root application of seaweed extract from Kappaphycus alvarezii (Rhodophyta). Journal of Applied Phycology. https://doi.org/10.1007/s10811-024-03216-y

Wagner, S., Cattle, S. and Scholten, T. 2007. Soil?aggregate formation as influenced by clay content and organic?matter amendment. Journal of Plant Nutrition and Soil Science 170:173-180. https://doi.org/10.1002/jpln.200521732

Wang, X., Zhu, Z., Huang, N., Wu, L., Lu, T. and Hu, Z. 2023. Impacts of biochar amendment and straw incorporation on soil heterotrophic respiration and desorption of soil organic carbon. Geoscience Letters 10(1). https://doi.org/10.1186/s40562-023-00285-8

Xiao, X., Chen, B. and Zhu, L. 2014. Transformation, morphology, and dissolution of silicon and carbon in rice straw-derived biochars under different pyrolytic temperatures. Environmental Science and Technology 48(6):3411-3419. https://doi.org/10.1021/es405676h

Yang, C., Liu, J. and Lu, S. 2021. Pyrolysis temperature affects pore characteristics of rice straw and canola stalk biochars and biochar-amended soils. Geoderma 397:115097. https://doi.org/10.1016/j.geoderma.2021.115097

Yang, L., May, P.W., Yin, L., Smith, J.A. and Rosser, K.N. 2007. Ultra fine carbon nitride nanocrystals synthesized by laser ablation in liquid solution. Journal of Nanoparticle Research 9(6):1181-1185. https://doi.org/10.1007/s11051-006-9192-4

Yew, Y.P., Shameli, K., Miyake, M., Kuwano, N., Bt Ahmad Khairudin, N.B., Bt Mohamad, S.E. and Lee, K.X. 2016. Green synthesis of magnetite (Fe3O4) nanoparticles using seaweed (Kappaphycus alvarezii) extract. Nanoscale Research Letters 11(1). https://doi.org/10.1186/s11671-016-1498-2

Yuan, J., Shengzhe, E. and Che, Z. 2022. Base cation-enhancing role of corn straw biochar in an acidic soil. Soil Use and Management 38(2):1322-1336. https://doi.org/10.1111/sum.12782

Zhang, S., Gong, W., Wan, X., Li, J., Li, Z., Chen, P., Xing, S., Li, Z. and Liu, Y. 2024. Influence of organic matter input and temperature change on soil aggregate-associated respiration and microbial carbon use efficiency in alpine agricultural soils. Soil Ecology Letters 6(3). https://doi.org/10.1007/s42832-023-0220-4

Zhang, S., Zhu, Q., Vries, W., Ros, G., Chen, X., Muneer, M., Zhang, F. and Wu, L. 2023. Effects of soil amendments on soil acidity and crop yields in acidic soils: A world-wide meta-analysis. Journal of Environmental Management 345. https://doi.org/10.1016/j.jenvman.2023.118531

Zheng, H., Liu, D., Liao, X., Miao, Y., Li, Y., Li, J., Yuan, J., Chen, Z. and Ding, W. 2022. Field-aged biochar enhances soil organic carbon by increasing recalcitrant organic carbon fractions and making microbial communities more conducive to carbon sequestration. Agriculture, Ecosystems and Environment 340:108177. https://doi.org/10.1016/j.agee.2022.108177

Zhou, G., Zhou, X., Zhang, T., Du, Z., He, Y., Wang, X., Shao, J., Cao, Y., Xue, S., Wang, H. and Xu, C. 2017. Biochar increased soil respiration in temperate forests but had no effects in subtropical forests. Forest Ecology and Management 405:339-349. https://doi.org/10.1016/j.foreco.2017.09.038

Downloads

Submitted

09-07-2024

Accepted

06-09-2024

Published

01-10-2024

How to Cite

Rembon, F. S., Kilowasid, L. M. H., Afa, L. O., Rakian, T. C., Parapa, I., Laksana, M. A. N., Sabaruddin, L., Ansi, A., Ramadhan, L. O. A. N., Dahlan, & Zulfikar. (2024). Water holding capacity, aggregation, respiration, and chemical character of acid soil amended rice straw biochar enriched with different volumes of liquid extract (sap) of Kappapychus alvarezii. Journal of Degraded and Mining Lands Management, 12(1), 6849–6864. https://doi.org/10.15243/jdmlm.2024.121.6949

Issue

Section

Research Article

Most read articles by the same author(s)