Land use/land cover (LULC) changes modeling and susceptibility mapping using the binary logistic regression at the territorial level in eastern DR Congo

Authors

DOI:

https://doi.org/10.15243/jdmlm.2024.114.6399

Keywords:

GIS, land use change , logistic regression model , proximate drivers , remote sensing , underlying drivers

Abstract

The Land Use and Land Cover (LULC) changes are commonly used to determine the landscape conditions and have significant impacts on the earth's surface processes. During the last three decades, there has been an acceleration of LULC changes in Eastern DR Congo. However, there is no comprehensive overview of the drivers of these changes at the territorial level in this region, even though the knowledge of these drivers is important for land use planning and spatial modeling of environmental changes. Using the Kalehe Territory as a case study, this work sought to fill this gap by analyzing the drivers of LULC changes during the 1987-2020 period. A mixed approach combining remote sensing, Geographic Information System, and logistic regression modeling was used. The results indicated that the prominent LULC changes in the study area are deforestation, built-up area expansion, cropland expansion, and shrubland expansion. These changes are significantly influenced by biophysical factors (slope, altitude, and soil type), conservation zoning, population dynamics, and accessibility factors at different levels. The occurrence of conservation zones decreases the susceptibility to deforestation, built-up land, and cropland expansions. In contrast, the proximity factors (distance to road, artisanal mining, and locality) increase the susceptibility to LULC changes. These factors can be integrated into spatial models to forecast LULC changes susceptibility in this region. Furthermore, the establishment of future land use management policy at the territorial level in eastern DR Congo should be space-specific as the susceptibility of LULC changes shows a spatial trend.

References

Anderson J.R., Hardy, E.E., Roach, J.T. and Witmer, R.E. 1976. A Land Use and Land Cover Classification System for Use with Remote Sensor Data- Geological Survey Professional Paper 964 - A revision of the land use classification system as presented in U.S. Geological Survey Circular 671.United States Government Printing Office, Washington: 1976. https://doi.org/10.3133/pp964

Bamba, I. 2010. Anthropisation et dynamique spatio-temporelle de paysages forestiers en République Démocratique du Congo, Theèse présentée en vue de l'obtention du grade de Docteur en Sciences, Service d'Écologie du Paysage et Systèmes de Production Végétale, Ecole Interfacultaire de BioIngénieurs, Faculté des Sciences, Universite Libre de Bruxelles, 205p

Basnet, B. and Vodacek, A. 2015. Tracking land use/land cover dynamics in cloud prone areas using moderate resolution satellite data: A case study in Central Africa. Remote Sensing 7(6):6683-6709. https://doi.org/10.3390/rs70606683

Bavaghar, M.P. 2015. Deforestation modelling using logistic regression and GIS. Journal of Forest Science 61(5):193-199. https://doi.org/10.17221/78/2014-JFS

Beilin, R., Lindborg, R., Stenseke, M., Pereira, H.M., Llausàs, A., Slatmo, E., ... and Queiroz, C. 2014. Analysing how drivers of agricultural land abandonment affect biodiversity and cultural landscapes using case studies from Scandinavia, Iberia and Oceania. Land Use Policy 36:60-72. https://doi.org/10.1016/j.landusepol.2013.07.003

Bhattacharjee, S. and Ghosh, S.K. 2015. Spatio-temporal change modeling of LULC: a semantic Kriging approach. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences 2(4):177. https://doi.org/10.5194/isprsannals-II-4-W2-177-2015

Ciza, S.K., Mikwa, J.F., Malekezi, A.C., Gond, V. and Bosela, F.B. 2015. Identification des moteurs de déforestation dans la région d'Isangi, République démocratique du Congo. Bois et Forets des Tropiques 324:29-38. https://doi.org/10.19182/bft2015.324.a31264

Geist, H.J. and Lambin, E.F. 2001. What drives tropical deforestation. LUCC Report Series 4:116.

Grinand, C., Vieilledent, G., Razafimbelo, T., Rakotoarijaona, J-R., Nourtier, M. and Bernoux, M. 2020. Landscape-scale spatial modelling of deforestation, land degradation, and regeneration using machine learning tools. Land Degradation & Development 2020:1-14. https://doi.org/10.1002/ldr.3526

GTAC. 2002. EXERCISE 1 Creating a Cloud-free Landsat Composite in Google Earth Engine, https://fsapps.nwcg.gov/gtac/CourseDownloads/Training/Remote_Sensing/DigitalSoilMapping_EarthEngine_NRCS/01_Exercises/Exercises_PDFs/01_DigitalSoilMappingEarthEngine_LandsatComposite.pdf.

Ilunga, L. 1991. Morphologie, volcanisme et sédimentation dans le rift du Sud-Kivu, Bulletin de la Société géographique de Liège 27:209-228

Kindu, M.M. 2017. Landscape Level Modelling of the Ethiopian Highland Resources: A geo-informatics application to their sustainable management, use and conservation. Technische Universitat Munchen.

Kipkulei, H.K., Bellingrath-Kimura, S.D., Lana, M., Ghazaryan, G., Boitt, M. and Sieber, S. 2022. Modelling cropland expansion and its drivers in Trans Nzoia County, Kenya. Modeling Earth Systems and Environment 8(4):5761-5778. https://doi.org/10.1007/s40808-022-01475-7

Kipute, D.D., Mate, J.P., Sufo Kankeu, R., Ngouhouo-Poufoun, J., Kahindo, J.M., Mampeta, S., ... and Demaze, M.T. 2023. Effectiveness of the Yangambi biosphere reserve in reducing deforestation in the Democratic Republic of the Congo. Human Ecology 51(1):75-87. https://doi.org/10.1007/s10745-022-00378-6

Megevand, C., Mosnier, A., Hourticq, J., Sanders, K., Doetinchem, N. and Streck, C. 2013. Dynamiques de déforestation dans le bassin du Congo : Réconcilier la croissance économique et la protection de la forêt Environnement et développement durable. Washington, DC: World Bank. https://doi.org/10.1596/978-0-8213-9827-2

Monjardin-Armenta, S.A., Plata-Rocha, W., Pacheco-Angulo, C.E., Franco-Ochoa, C. and Rangel-Peraza, J.G. 2020. Geospatial simulation model of deforestation and reforestation using multicriteria evaluation. Sustainability 12(24):10387. https://doi.org/10.3390/su122410387

Moonen, P.C., Verbist, B., Schaepherders, J., Meyi, M.B., Van Rompaey, A. and Muys, B. 2016. Actor-based identification of deforestation drivers paves the road to effective REDD+ in DR Congo. Land Use Policy 58:123-132. https://doi.org/10.1016/j.landusepol.2016.07.019

Mottet, A., Ladet, S., Coqué, N. and Gibon, A. 2006. Agricultural land-use change and its drivers in mountain landscapes: A case study in the Pyrenees. Agriculture, Ecosystems and Environment 114(2-4):296-310. https://doi.org/10.1016/j.agee.2005.11.017

Munthali, M.G. 2020. Analysis of land use and land cover dynamics and its implications on natural resources in Dedza District Malawi. Doctoral dissertation, University of Pretoria. https://doi.org/10.1080/10106049.2020.1791978

Opiyo, S.B., Opinde, G. and Letema, S. 2022. Dynamics and drivers of land use and land cover changes in Migori River Watershed, western Kenya region. Watershed Ecology and the Environment 4:219-232. https://doi.org/10.1016/j.wsee.2022.11.008

Pahari, K. and Murai, S. 1999. Modelling for prediction of global deforestation based on the growth of human population. ISPRS Journal of Photogrammetry and Remote Sensing 54(5-6):317-324. https://doi.org/10.1016/S0924-2716(99)00032-5

Rojas, E., Zutta, B.R., Velazco, Y.K., Montoya-Zumaeta, J.G. and Salva-Catarineu, M. 2021. Deforestation risk in the Peruvian Amazon basin. Environmental Conservation 48(4):310-319. https://doi.org/10.1017/S0376892921000291

Serneels, S. and Lambin, E.F. 2001. Proximate causes of land-use change in Narok District, Kenya: a spatial statistical model. Agriculture, Ecosystems and Environment 85(1-3):65-81. https://doi.org/10.1016/S0167-8809(01)00188-8

Shapiro, A.C., Bernhard, K.P., Zenobi, S., Müller, D., Aguilar-Amuchastegui, N. and d'Annunzio, R. 2021. Proximate causes of forest degradation in the Democratic Republic of the Congo vary in space and time. Frontiers in Conservation Science 2:690562. https://doi.org/10.3389/fcosc.2021.690562

Tyukavina, A., Hansen, M.C., Potapov, P., Parker, D., Okpa, C., Stehman, S.V., Kommareddy, I. and Turubanova, S. 2018. Congo Basin forest loss dominated by increasing smallholder clearing. Science Advances 4(11):eaat2993. https://doi.org/10.1126/sciadv.aat2993

Veldkamp, A. and Lambin, E.F. 2001. Predicting land-use change. Agriculture, Ecosystems and Environment 85:1-6. https://doi.org/10.1016/S0167-8809(01)00199-2

Yesuph, A.Y. and Dagnew, A.B. 2019. Land use/cover spatiotemporal dynamics, driving forces and implications at the Beshillo catchment of the Blue Nile Basin, North Eastern Highlands of Ethiopia. Environmental Systems Research 8(1):1-30. https://doi.org/10.1186/s40068-019-0148-y

Shapiro, A.C., Bernhard, K.P., Zenobi, S., Müller, D., Aguilar-Amuchastegui, N. and d'Annunzio, R. 2021. Proximate causes of forest degradation in the Democratic Republic of the Congo vary in space and time. Frontiers in Conservation Science 2:690562. https://doi.org/10.3389/fcosc.2021.690562

Tyukavina, A., Hansen, M.C., Potapov, P., Parker, D., Okpa, C., Stehman, S.V., Kommareddy, I. and Turubanova, S. 2018. Congo Basin forest loss dominated by increasing smallholder clearing. Science Advances 4(11):eaat2993. https://doi.org/10.1126/sciadv.aat2993

Veldkamp, A. and Lambin, E.F. 2001. Predicting land-use change. Agriculture, Ecosystems and Environment 85:1-6. https://doi.org/10.1016/S0167-8809(01)00199-2

Yesuph, A.Y. and Dagnew, A.B. 2019. Land use/cover spatiotemporal dynamics, driving forces and implications at the Beshillo catchment of the Blue Nile Basin, North Eastern Highlands of Ethiopia. Environmental Systems Research 8(1):1-30. https://doi.org/10.1186/s40068-019-0148-y

Downloads

Submitted

25-03-2024

Accepted

28-05-2024

Published

01-07-2024

How to Cite

Nteranya, J. N., Kiplagat, A., Ucakuwun, E. K., & Nzabandora , C. K. (2024). Land use/land cover (LULC) changes modeling and susceptibility mapping using the binary logistic regression at the territorial level in eastern DR Congo. Journal of Degraded and Mining Lands Management, 11(4), 6399–6411. https://doi.org/10.15243/jdmlm.2024.114.6399

Issue

Section

Research Article