Cadmium and zinc accumulation behaviour of hyperaccumulator Arabidopsis halleri ssp. gemmifera in the hydroponic system

Authors

  • Syarifah Hikmah Julinda Sari Faculty Fisheries and Marine Science, Brawijaya University
  • Mei-Fang Chien Graduate School of Environmental Studies Tohoku University
  • Chihiro Inoue Graduate School of Environmental Studies Tohoku University

DOI:

https://doi.org/10.15243/jdmlm.2023.102.4155

Keywords:

Arabidopsis halleri ssp. gemmifera, bioaccumulation, cadmium, translocation, zinc

Abstract

Arabidopsis halleri ssp. gemmifera is classified as Cd and Zn hyperaccumulator plant, however, the disparity accumulation preferences in organs (root, stem and leaves) between cadmium and zinc seems less understandable. Therefore, this study aimed to portray accumulation behaviour toward the presence of Cd and Zn in the hydroponic method employing A. halleri ssp. gemmifera. The experiment was conducted by applying this plant using 2 and 300 µM of Cd, and 2 and 200 µM Zn, together with 20% Hoagland solution for 7 days, separately. The results showed that Zn in the medium was uptake faster than Cd. Furthermore, increasing Cd/Zn supply at the medium resulted in an increasing accumulation of Cd/Zn in the organs of the plant. In both Cd treatments, the accumulation followed the order of stem>root>leaves, indicating Cd transportation to the upper part has occurred during this period. The same accumulation preference pattern was also reported in the 200 µM Zn supply. However, at 2 µM Zn supply, Zn accumulation was mainly found in the leaves, followed by the root and stem. A. halleri ssp. gemmifera uptake Zn faster from the medium and translocate rapidly to the leaves at low-level Zn supply. Increasing Zn supply concentration might inhibit the translocation of Zn from stem to leaves. Meanwhile, regardless of Cd supply concentrations, this plant could only translocate Cd to the stem mostly within a short-time exposure period. Therefore, this study concluded that A. halleri ssp. gemmifera exhibited different accumulation responses when exposed to different Cd and Zn supply concentrations.

Author Biography

Syarifah Hikmah Julinda Sari, Faculty Fisheries and Marine Science, Brawijaya University

Graduate School of Environmental Studies Tohoku University

References

Babst-Kostecka, A., Schat, H., Saumitou-Laprade, P., Grodzińska, K., Bourceaux, A., Pauwels, M. and Frérot, H. 2018. Evolutionary dynamics of quantitative variation in an adaptive trait at the regional scale: the case of zinc hyperaccumulation in Arabidopsis halleri. Molecular Ecology 27(16):3257-3273, doi:10.1111/mec.14800.

Chi, K., Zou, R., Wang, L., Huo, W. and Fan, H. 2019. Cellular distribution of cadmium in two amaranth (Amaranthus mangostanus L.) cultivars differing in cadmium accumulation. Environmental Science and Pollution Research 26(22):22147–22158, doi:10.1007/s11356-019-05390-w.

Coakley, S., Cahill, G., Enright, A.-M., O’Rourke, B. and Petti, C. 2019. Cadmium hyperaccumulation and translocation in Impatiens glandulifera_ from foe to friend. Sustainability (Switzerland) 11:5018, doi:10.3390/su11185018.

Dinh, N.T., Vu, D.T., Mulligan, D. and Nguyen, A.V. 2015. Accumulation and distribution of zinc in the leaves and roots of the hyperaccumulator Noccaea caerulescens. Environmental and Experimental Botany 110:85-95, doi:10.1016/j.envexpbot.2014.10.001.

Gupta, N., Ram, H. and Kumar, B. 2016. Mechanism of Zinc absorption in plants: uptake, transport, translocation and accumulation. Reviews in Environmental Science and Biotechnology 15(1):89-109, doi:10.1007/s11157-016-9390-1.

He, S., Yang, X., He, Z. and Baligar, V C. 2017. Morphological and physiological responses of plants to cadmium toxicity: a review. Pedosphere 27(3):421-438, doi:10.1016/S1002-0160(17)60339-4.

Hu, P.J., Qiu, R.L., Senthilkumar, P., Jiang, D., Chen, Z.W., Tang, Y.T. and Liu, F.J. 2009. Tolerance, accumulation and distribution of zinc and cadmium in hyperaccumulator Potentilla griffithii. Environmental and Experimental Botany 66(2):317-325, doi:10.1016/j.envexpbot.2009.02.014.

Jain, S., Muneer, S., Guerriero, G., Liu, S., Vishwakarma, K., Chauhan, D.K., Dubey, N.K., Tripathi, D.K. and Sharma, S. 2018. Tracing the role of plant proteins in the response to metal toxicity: a comprehensive review. Plant Signaling and Behavior 13(9):1-11, doi:10.1080/15592324.2018.1507401.

Kacálková, L., Tlustoš, P. and Száková, J. 2009. Phytoextraction of cadmium, copper, zinc and mercury by selected plants. Plant, Soil and Environment 55(7):295-304, doi:10.17221/100/2009-pse.

Kashem, M.A., Singh, B.R., Kubota, H., Nagashima, R.S., Kitajima, N., Kondo, T. and Kawai, S. 2007. Assessing the potential of Arabidopsis halleri ssp. gemmifera as a new cadmium hyperaccumulator grown in hydroponics. Canadian Journal of Plant Science 87(3):499-502, doi:10.4141/CJPS06058.

Li, J.T., Gurajala, H.K., Wu, L.H., Van Der Ent, A., Qiu, R.L., Baker, A.J.M., Tang, Y.T., Yang, X.E. and Shu, W.S. 2018. Hyperaccumulator plants from China: a synthesis of the current state of knowledge. Environmental Science and Technology 52(21):11980-11994, doi:10.1021/acs.est.8b01060.

Patra, D.K., Pradhan, C. and Patra, H.K. 2020. Toxic metal decontamination by phytoremediation approach: concept, challenges, opportunities and future perspectives. Environmental Technology and Innovation 18:100672, doi:10.1016/j.eti.2020.100672.

Rascio, N. and Navari-Izzo, F. 2011. Heavy metal hyperaccumulating plants: How and why do they do it? and what makes them so interesting?. Plant Science 180(2):169-181, doi:10.1016/J.PLANTSCI.2010.08.016.

Shah, V. and Daverey, A. 2020. Phytoremediation: a multidisciplinary approach to clean up heavy metal contaminated soil. Environmental Technology and Innovation 18:100774, doi:10.1016/j.eti.2020.100774.

Song, Y., Jin, L. and Wang, X. 2017. Cadmium absorption and transportation pathways in plants. International Journal of Phytoremediation 19(2):133-141, doi:10.1080/15226514.2016.1207598.

Tang, Y.T., Qiu, R.L., Zeng, X.W., Ying, R.R., Yu, F.M. and Zhou, X.Y. 2009. Lead, zinc, cadmium hyperaccumulation and growth stimulation in Arabis paniculata Franch. Environmental and Experimental Botany 66(1):126-134, doi:10.1016/j.envexpbot.2008.12.016.

Verbruggen, N., Hermans, C. and Schat, H. 2009. Molecular mechanisms of heavy metal hyperaccumulation in plants. New Phytologist 181:759-776, doi:10.1111/j.1469-8137.2008.02748.x.

Wiyono, C.D.A.P., Inoue, C. and Chien, M.F. 2021. HMA4 and IRT3 as indicators accounting for different responses to Cd and Zn by hyperaccumulator Arabidopsis halleri ssp. gemmifera. Plant Stress 2:100042, doi:10.1016/j.stress.2021.100042.

Xu, X., Zhang, S., Xian, J., Yang, Z., Cheng, Z., Li, T., Jia, Y., Pu, Y. and Li, Y. 2018. Subcellular distribution, chemical forms and thiol synthesis involved in cadmium tolerance and detoxification in Siegesbeckia orientalis L. International Journal of Phytoremediation 20(10):973-980, doi:10.1080/15226514.2017.1365351.

Xv, L., Ge, J., Tian, S., Wang, H., Yu, H., Zhao, J. and Lu, L. 2020. A Cd/Zn co-hyperaccumulator and Pb accumulator, Sedum alfredii, is of high Cu tolerance. Environmental Pollution 263:114401, doi:10.1016/j.envpol.2020.114401.

Yang, J., Guo, J. and Yang, J. 2018. Cadmium accumulation and subcellular distribution in populations of Hylotelephium spectabile (Boreau) H. Ohba. Environmental Science and Pollution Research 25(31):30917-30927, doi:10.1007/s11356-018-3065-0.

Yoon, J., Cao, X., Zhou, Q. and Ma, L.Q. 2006. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Science of the Total Environment 368(2-3):456-464, doi:10.1016/j.scitotenv.2006.01.016.

Yu, B., Peng, Y., Xu, J., Qin, D., Gao, T., Zhu, H., Zuo, S., Song, H. and Qin, D. 2021. Phytoremediation potential of Youngia japonica ( L .) DC : a newly discovered cadmium hyperaccumulator. Environmental Science and Pollution Research 28:6044-6057, doi:10.1007/s11356-020-10853-6.

Zhang, Z., Wen, X., Huang, Y. and Inoue, C. 2017. Higher accumulation capacity of cadmium than zinc by Arabidopsis halleri ssp . germmifera in the field using different sowing strategies. Plant and Soil 418:165-176, doi:10.1007/s11104-017-3285-y.

Zhao, F.J., Jiang, R.F., Dunham, S.J. and McGrath, S.P. 2006. Cadmium uptake, translocation and tolerance in the hyperaccumulator Arabidopsis halleri. New Phytologist 172(4):646–654, doi:10.1111/j.1469-8137.2006.01867.x.

Zhao, F.J., Lombi, E. and McGrath, S.P. 2003. Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens. Plant and Soil 249(1):37-43, doi:10.1023/A:1022530217289.

Zhao, F.J., Lombi, E., Breedon, T. and McGrath, S.P. 2000. Zinc hyperaccumulation and cellular distribution in Arabidopsis halleri. Plant, Cell and Environment 23(5):507-514, doi:10.1046/j.1365-3040.2000.00569.x.

Zhou, W. and Qiu, B. 2005. Effects of cadmium hyperaccumulation on physiological characteristics of Sedum alfredii Hance (Crassulaceae ). Plant Science 169:737-745, doi:10.1016/j.plantsci.2005.05.030.

Miransari, M. 2011. Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals. Biotechnology Advances 29(6):645-653, doi:10.1016/j.biotechadv.2011.04.006.

Bhattacharya, E. and Mandal Biswas, S. 2022. First report of the hyperaccumulating potential of cadmium and lead by Cleome rutidosperma DC. with a brief insight into the chemical vocabulary of its roots. Frontiers in Environmental Science 10(May):1-11, doi:10.3389/fenvs.2022.830087.

Downloads

Submitted

21-09-2022

Accepted

23-10-2022

Published

01-01-2023

How to Cite

Sari, S. H. J., Chien, M.-F., & Inoue, C. (2023). Cadmium and zinc accumulation behaviour of hyperaccumulator Arabidopsis halleri ssp. gemmifera in the hydroponic system. Journal of Degraded and Mining Lands Management, 10(2), 4155–4162. https://doi.org/10.15243/jdmlm.2023.102.4155

Issue

Section

Research Article