Effect of lime application on phosphorus adsorption and desorption in post-active acid sulfate soil, Thailand

Authors

  • Saychol Sukyankij Faculty of Science and Technology, Phranakhon Si Ayutthaya Rajabhat University, Phranakhon Si Ayutthaya 13000
  • Sopida Sukyankij Faculty of Science and Technology, Phranakhon Si Ayutthaya Rajabhat University, Phranakhon Si Ayutthaya 13000
  • Chalinee Khongsud Central Laboratory and Greenhouse Complex, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140
  • Thanawan Panich-pat Department of Science and Bioinnovation, Faculty of Liberal Arts and Science, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140

DOI:

https://doi.org/10.15243/jdmlm.2024.112.5279

Keywords:

adsorption, desorption, lime, phosphorus, post-active acid sulfate soil

Abstract

The application of lime is the general method of improving acid sulfate soils. However, if a lot of lime is applied, it can reduce the bioavailability of nutrients in the soil, especially phosphorus. The objective of this study was to investigate the effects of liming at different rates on the availability, adsorption, and desorption of phosphorus in two post-active acid sulfate soils (Ay and Se). The experiment was performed in the laboratory. The experiment was laid out in a completely randomized design (CRD) with four treatments and three replicates, i.e., the application of lime at a rate of 0 (control), 0.5, 1.0, and 2.0 times the lime requirement (LR). The lime requirements of the soils in the Ay and Se were 5,690 and 12,250 kg CaCO3/ha, respectively. The finding revealed that increasing the amount of lime could increase soil pH, available phosphorus, and the phosphorus activation coefficient. Application of lime at a dosage of 1.0-2.0 LR resulted in the highest phosphorus adsorption maximum (Qm) (380 mg/kg), while 0.5 LR resulted in the lowest Qm (353 mg/kg) in Se soil only. As lime dosage increased, phosphorus desorption maximum (Dm) and phosphorus desorption ratio (Dr) increased, with 2.0 LR yielding the highest values (124 mg/kg and 23.6 percent for Ay soil, and 77.3 mg/kg and 20.3 percent for Se soil, respectively). The results suggested that applying lime according to the lime requirement test, especially 2.0 LR, is the best option to promote the release of phosphorus in post-active acid sulfate soils.

References

Attanandana, T. and Vacharotayan, S. 1986. Acid sulfate soils: their characteristics, genesis, amelioration and utilization. Japanese Journal of Southeast Asian Studies 24:154-180.

Bekele, M., Kebede, F. and Haile, W. 2020. Phosphorus adsorption-desorption isotherm of lime treated and untreated acid soils of Assosa and Bambasi districts, West Ethiopia. Communications in Soil Science and Plant Analysis 51(15):1979-1990. https://doi.org/10.1080/00103624.2020.1808011 DOI: https://doi.org/10.1080/00103624.2020.1808011

Bray, R.H. and Kurtz, L.T. 1945. Determination of total, organic, and available forms of phosphorus in soils. Soil Science 59(1):39-46. https://doi.org/10.1097/00010694-194501000-00006 DOI: https://doi.org/10.1097/00010694-194501000-00006

Division of Soil Survey and Soil Resource Research. 2019. Soil map of Phranakhon Si Ayutthaya province [WWW Document]. URL http://oss101.ldd.go.th/web_thaisoilinf/central/Ayutthaya/ay_map/ay_series/ay_series58.html (accessed 17. 7. 2019) (in Thai).

Eslamian, F., Qi, Z. and Qian, C. 2021. Lime amendments to enhance soil phosphorus adsorption capacity and to reduce phosphate desorption. Water Air and Soil Pollution 232:66. https://doi.org/10.1007/s11270-021-05024-3 DOI: https://doi.org/10.1007/s11270-021-05024-3

Fanning, D.S. 2012. Acid sulfate soils. In: Jorgensen S.R. (ed), Encyclopedia of Environmental Management. Taylor and Francis, New York, pp. 26-30. https://doi.org/10.1201/9781351235860 DOI: https://doi.org/10.1201/9781351235860

Gee, G.W. and Bauder, J.W. 1986. Particle-size analysis. In: Klute, A. (ed), Methods of Soil Analysis Part 1: Physical and Mineralogical Methods. Soil Science Society of America, Inc, Madison, Wisconsin, pp. 383-411. https://doi.org/10.2136/sssabookser5.1.2ed.c15 DOI: https://doi.org/10.2136/sssabookser5.1.2ed.c15

Ghodszad, L., Reyhanitabar, A., Oustan, S. and Alidokht, L. 2022. Phosphorus sorption and desorption characteristics of soils as affected by biochar. Soil and Tillage Research 216:105251. https://doi.org/10.1016/j.still.2021.105251 DOI: https://doi.org/10.1016/j.still.2021.105251

Holford, I.C.R., Schweitzer, B.E. and Crocker, G.J. 1994. Long-term effects of lime on soil phosphorus solubility and sorption in eight acidic soils. Australian Journal of Soil Research 32:795-803. https://doi.org/10.1071/SR9940795 DOI: https://doi.org/10.1071/SR9940795

Johan, P.D., Ahmed, O.H., Omar, L. and Hasbullah, N.A. 2021. Phosphorus transformation in soils following co-application of charcoal and wood ash. Agronomy 11: 2010. https://doi.org/10.3390/agronomy11102010 DOI: https://doi.org/10.3390/agronomy11102010

Kalam, S., Abu-Khamsin, S.A., Kamal, M.S. and Patil, S. 2021. Surfactant adsorption isotherms: A review. ACS Omega 6(48):32342-32348. https://doi.org/10.1021/acsomega.1c04661 DOI: https://doi.org/10.1021/acsomega.1c04661

Kuo, S. 1996. Phosphorus. In: Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T. and Sumner, M.E. (eds), Methods of Soil Analysis Part 3: Chemical Methods. Soil Science Society of America, Inc, Madison, Wisconsin, pp. 869-919. https://doi.org/10.2136/sssabookser5.3.c32 DOI: https://doi.org/10.2136/sssabookser5.3.c32

Land Classification Division and FAO Project Staff. 1973. Soil Interpretation Handbook for Thailand. Department of Land Development, Ministry of Agriculture and Cooperatives, Bangkok, Thailand.

Mkhonza, N.P., Buthelezi-Dube, N.N. and Muchaonyerwa, P. 2018. Effects of lime application on nitrogen and phosphorus availability in humic soils. Scientific Reports 10:8634. https://doi.org/10.1038/s41598-020-65501-3 DOI: https://doi.org/10.1038/s41598-020-65501-3

Mosharrof, M., Uddin, M.K., Jusop, S., Sulaiman, M.F., Shamsuzzaman, S.M. and Haque, A.N.A. 2021. Changes in acidic soil chemical properties and carbon dioxide emission due to biochar and lime treatments. Agriculture 11:219. https://doi.org/10.3390/agriculture11030219 DOI: https://doi.org/10.3390/agriculture11030219

Penn, C.J. and Camberato, J.J. 2019. A critical review on soil chemical processes that control how soil pH affects phosphorus availability to plants. Agriculture 9(6):120. https://doi.org/10.3390/agriculture9060120 DOI: https://doi.org/10.3390/agriculture9060120

Pequerul, A., Perez, C, Madero, P., Val, J. and Monge, E. 1993. A rapid wet digestion method for plant analysis. In: Fragoso, M.A.C. and van Beusichem, M.L. (eds). Optimization of Plant Nutrition. Springer Science+Business Media, Dordrecht, pp. 3-6. https://doi.org/10.1007/978-94-017-2496-8_1 DOI: https://doi.org/10.1007/978-94-017-2496-8_1

Rhoades, J.D. 1996. Salinity: Electrical conductivity and total dissolved solids. In: Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T. and Sumner, M.E. (eds), Methods of Soil Analysis Part 3: Chemical Methods. Soil Science Society of America, Inc, Madison, Wisconsin, pp. 417-435. https://doi.org/10.2136/sssabookser5.3.c14 DOI: https://doi.org/10.2136/sssabookser5.3.c14

Sukitprapanon, T., Suddhiprakarn, A., Kheoruenromne, I. and Gilkes, R.J. 2018. Partitioning and potential mobilization of aluminum, arsenic, iron, and heavy metals in tropical active and post-active acid sulfate soils: Influence of long-term paddy rice cultivation. Chemosphere 197: 691-702. https://doi.org/10.1016/j.chemosphere.2018.01.099 DOI: https://doi.org/10.1016/j.chemosphere.2018.01.099

Sukitprapanon, T., Suddhiprakarn, A., Kheoruenromne, I., Anusontpornperm, S. and Gilkes, R.J. 2016. A comparison of potential, active and post-active acid sulfate soils in Thailand. Geoderma Regional 7(3):346-356. https://doi.org/10.1016/j.geodrs.2016.08.001 DOI: https://doi.org/10.1016/j.geodrs.2016.08.001

Sukyankij, S., Sukyankij, S. and Panich-pat, P. 2023. Effect of co-fertilizer application and dolomite amendments on yield and grain quality of rice grown on post-active acid sulfate soil. AGRIVITA Journal of Agricultural Science 45(2):311-321. https://doi.org/10.17503/agrivita.v45i2.4079 DOI: https://doi.org/10.17503/agrivita.v45i2.4079

Thomas, G.W. 1982. Exchangeable cations. In: Page, A.L., Miller, R.H. and Keeney, D.R. (eds). Methods of Soil Analysis Part 2: Chemical and Microbiological Properties. Soil Science Society of America, Inc, Madison, Wisconsin, pp. 159-165. https://doi.org/10.2134/agronmonogr9.2.2ed.c9 DOI: https://doi.org/10.2134/agronmonogr9.2.2ed.c9

Thomas, G.W. 1996. Soil pH and soil acidity. In: Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T. and Sumner, M.E. (eds). Methods of Soil Analysis Part 3: Chemical Methods. Soil Science Society of America, Inc, Madison, Wisconsin, pp. 475-490. https://doi.org/10.2136/sssabookser5.3.c16 DOI: https://doi.org/10.2136/sssabookser5.3.c16

Walkley, A. and Black, I.A. 1934. An examination of Degtjareff methods for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science 37(1):29-38. https://doi.org/10.1097/00010694-193401000-00003 DOI: https://doi.org/10.1097/00010694-193401000-00003

Woodruff, C.M. 1948. Testing soil for lime requirement by means of a buffered solution and glass electrode. Soil Science 76:53-63. https://doi.org/10.1097/00010694-194807000-00005 DOI: https://doi.org/10.1097/00010694-194807000-00005

Yang, X., Chen, X. and Yang, X. 2019. Effect of organic matter on phosphorus adsorption and desorption in a black soil from Northeast China. Soil and Tillage Research 187:85-91. https://doi.org/10.1016/j.still.2018.11.016 DOI: https://doi.org/10.1016/j.still.2018.11.016

Downloads

Submitted

04-07-2023

Accepted

01-09-2023

Published

01-01-2024

How to Cite

Sukyankij, S., Sukyankij, S., Khongsud, C., & Panich-pat, T. (2024). Effect of lime application on phosphorus adsorption and desorption in post-active acid sulfate soil, Thailand. Journal of Degraded and Mining Lands Management, 11(2), 5279–5286. https://doi.org/10.15243/jdmlm.2024.112.5279

Issue

Section

Research Article