The conversion of monoculture sugarcane to a tree-based agroforestry system increases total carbon sequestration and soil macrofauna population

Authors

  • Cahyo Prayogo Soil Department, Faculty of Agriculture, University of Brawijaya
  • Novi Arfarita Faculty of Agriculture, University of Islam Malang

DOI:

https://doi.org/10.15243/jdmlm.2022.101.3933

Keywords:

agroforestry, carbon sequestration, climate change, land use, soil macrofauna

Abstract

Vegetations accumulate carbon (C) from the atmosphere in the form of tree biomass, producing litter which then becomes the main input of soil organic matter. The accumulation of soil organic matter provides food and energy for soil macrofauna to help maintain soil fertility. Total C accumulation is affected by land use changes which can then reduce soil ecosystem and ecological functioning. This study examined the impact of land use conversion from monoculture sugarcane to a tree-based agroforestry system. The results showed that the land use changes affected soil texture, bulk density, soil organic matter, and total C sequestration. The total C sequestration under 5 years old sengon (Paraserianthes moluccana) agroforestry system was almost double that of total C sequestration 2 times or even 5 times ratooned monoculture sugarcane (Saccharum officinarum). The lowest IVI of soil macrofauna was detected under 1-year-old sengon agroforestry system before it was getting lowered under a longer period of cultivation, whilst the highest population was detected under 5 years old Sengon. Multivariate analysis, which was employed to detect the impact of land use changes, could cluster and group the effect of treatments based on selected variables such as soil physical, chemicals, and soil macrofauna structure and diversity, which accounted for 97.75% of the total variance. There was a strong relationship between the abundance of Formicidae sp. and Carabidae sp.

References

Al Qassam, I. and Prayogo, C. 2018. The relationship between carbon stocks on teak (Tectona grandis) stands using remote sensing and field measurement. Jurnal Tanah dan Sumberdaya Lahan 5(1):727-737 (in Indonesian).

Anaya, C.A. and Huber-Sannwald., E. 2014. Long-term soil organic carbon and nitrogen dynamics after conversion of tropical forest to traditional sugarcane agriculture in East Mexico. Soil and Tillage Research 147:20-29, doi:10.1016/j.still.2014.11.003.

Arifin, Z. 2011. Soil quality indices analysis of Entisols across land use systems. Jurnal Agroteksos 21(1):47-54 (in Indonesian)

Ayuke, F.O., Karanja, N.K., Muya, E.M., Musombi, B.K., Mungatu, J. and Nyamasyo, G.H.N. 2009. Macrofauna diversity and abundance across different land use systems in Embu, Kenya. Tropical and Subtropical Agroecosystems 11(2):371-384

Barrios, M.D.R., Junior, J.M., Matias, S.S.R., Panosso, A.R., Siqueira, D.S. and Junior, N.S. 2017. Magnetic susceptibility as indicator of soil quality in sugarcane fields. Revista Caatinga, Mossoró 30(2):287-295.

Borges, L.A.B., Ramos, M.L.G., Fernandes, P.M., Carneiro M.A.C. and Silva, A.M.M. 2018. Organic cultivation of sugarcane restores soil organic carbon and nitrogen. Organic Agriculture 9(4):435-444, doi:10.1007/s13165-018-0234-x

Butarbutar, T. 2009. The potency of the forestry sector's contribution to national food security through agroforestry development. Jurnal Analisis Kebijakan Kehutanan 6(3):169-179 (in Indonesian).

Chave, J., Andalo, C., Brown, S., Cairns, M.A., Chambers, J.Q., Eamus, D., Folster, H., Fromard, F., Higuchi, N., Kira, T., Lescure, JP., Nelson, B.W., Ogawa, H., Puig, H., Riera, B. and Yamakura, T. 2005. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145:87-99, doi:10.1007/s00442-005-0100-x.

Da Rocha Junior, P.R., Soares, M.L., Ribeiro, I.G., Vieira Da Costa, A.S., Donagemma, G.K. and De Sá Mendonça, E. 2014. Soil carbon stocks in silvopastoral system, pasture, and sugarcane culture. IDESIA (Chile) Enero-Febrero 32(1):35-42, doi:10.4067/S0718-34292014000100005.

Darung, U., Soemarno, Dohong, S. and Prayogo, C. 2018. Controlling factor of carbon dioxide flux from tropical peat soil in palm oil at Central Kalimantan, Indonesia. Bioscience Research 15(4):3809-3820.

Elias, and Wistara, N.J. 2009. Method for estimation of tree carbon mass of Paraserianthes falcataria L. Nielsen in community forests. Jurnal Manajemen Hutan Tropika 15(2):75-82 (in Indonesian).

Elias, Wistara, N.J., Dewi, M. and Purwitasari, H. 2010. Equation models of tree root carbon mass and root-shoot carbon mass ratio. Jurnal Manajemen Hutan Tropika 16(3):113-117 (in Indonesian).

FAO (Food and Agriculture Organization of the United Nations). 2019. Standard Operation Procedure for Soil Organic Carbon: Walkley-Black method-Titration and Colorimetric Method.

Galdos, M.V., Cerri, C.C. and Cerri, C.E.P. 2009. Soil Carbon stocks under burned and unburned sugarcane in Brazil. Geoderma 153:347-352, doi:10.1016/j.geoderma.2009.08.025.

Ghayal, N., Pravin, T. and Kondiram, D. 2011. Influence of sugarcane monoculture on rhizosphere microflora, soil enzymes and NPK status. International Journal of Pharma and Bio Sciences 2:1-15.

Ginting, T.T. and Prayogo, C. 2018. Carbon stocks estimation of teak forest (Tectona grandis) using different allometric equations across stand age. Jurnal Tanah dan Sumberdaya Lahan 5(2):1019-1026 (in Indonesian).

Hairiah, K. 2018. Soil carbon transitions support climate change mitigation. Journal of Soil Science and Agroclimatology 15(2):134-139, doi:10.20961/stjssa.v15i2.24972.

Hairiah, K., Ekadinata, A., Sari, R.R. and Rahayu, S. 2011. A Manual: Measuring Carbon Stock from Plot to Landscape Level. Second edition. World Agroforestry Centre, ICRAF Southeast Asia and University of Brawijaya (UB), Malang, Indonesia. ISBN 978-979-3198-53-8. 90 pp.

Hairiah, K., Prayogo, C., Kurniawan, S. and Sudarto. 2021. Adaptation to and mitigation of climate change in the Bangsri Micro-watershed, East Java, Indonesia. IOP Conference Series: Earth and Environmental Science 648(1):012128, doi:10.1088/1755-1315/648/1/012128.

IPCC (Intergovernmental Panel on Climate Change). 2006. IPCC Guidelines for National Greenhouse Gas Inventories, prepared by National Greenhouse Gas Inventories Programme, Eggleton, H.S., Buendia, L., Miwa, K., Ngara, T. and Tanabe, K. (editors). IGES. Japan.

Ishaq, R.M., Saputra, D.D., Sari, R.R., Suprayogo, D., Widianto, and Prayogo. C. 2020. Turning volcanic ash into fertile soil: farmers’ options in coffee agroforestry after the 2014 mount Kelud eruption. AGRIVITA: Journal of Agricultural Science 42(1):78-91, doi:10.17503/agrivita.v42i1.2494.

Khalif, U., Utami, S.R. and Kusuma, Z. 2014. Effect of sengon (Paraserianthes falcataria) cultivation to soil carbon and nitrogen content in Slamparejo, Jabung, Malang. Jurnal Tanah dan Sumberdaya Lahan 1(1):9-16 (in Indonesian).

Krisnawati, H., Varis, E., Kallio, M. and Kanninen, M. 2011 Paraserianthes falcataria L. Nielsen: Ecology, Silviculture and Productivity. CIFOR, Bogor, Indonesia.

Labata, M.M., Aranico, E.C., Tabaranza, A.C.E., Patricio, J.H.P. and Amparado, R.F. Jr. 2012. Carbon stock assessment of three selected agroforestry systems in Bukidnon, Philippines. Advances in Environmental Sciences 4(1):5-11.

Lasco, D.R., Cruz, R.V.O., Pulhin, J.M. and Pulhin, F.B. 2006. Tradeoff Analysis of Adaptation Strategies for Natural Resources, Water Resources, and Local Institutions in the Philippines. AAIACC Working Paper. 32.

Lasco, R.D. and Pulhin, F.B. 2003. Philippine forest ecosystems and climate change: carbon stocks, rate of sequestration and the Kyoto protocol. Annals of Tropical Research 25(2):37-51.

Lasco, R.D. and Pulhin, F.B., 2009. Carbon Budgets of Forest Ecosystems in the Philippines. Journal of Environmental Science and Management 12(1):1-13.

Lasco, R.D. 2002. Forest carbon budgets in Southeast Asia following harvesting and land cover change. Science in China Series C Life Sciences 45:55-64.

Lasco, R.D., Guillermo, I.Q., Cruz, R.V.O., Bantayan, N.C., and Pulhin, F.B. 2004. Carbon stocks assessment of a tropical secondary forest in Mt. Makiling, Philippines. Journal of Tropical Forest Science 16:35-45.

Lindell, I. and Kroon, G.M. 2010. Sugarcane and agroforestry farming in western Kenya: A comparative study of different farming systems in the Nyando district Bachelor’s dissertation in Biology. Department of Crop Production Ecology Uppsala-Swedish University of Agricultural Sciences.

Lusiana, B., Noordwijk, M.V. and Rahayu, S. 2005. Carbon Stocks in Nunukan, East Kalimantan: a Spatial Monitoring and Modelling Approach. Report from the carbon monitoring team of the Forest Resources Management for Carbon Sequestration (FORMACS) project. Bogor, Indonesia. World Agroforestry Centre - ICRAF, SEA Regional Office. 98 p.

Malayao, S.L. and Mendoza, T.C. 2013. Comparative carbon storage of Lanzones fruit tree (Lansium domesticum) and Falcata forest (Paraserianthes falcataria) tree-based agroforestry systems. Annals of Tropical Research 35(2):88-107.

Mayrowani, H. and Ashari. 2011. Agroforestry development to support food security and forest margin farmer empowerment. Forum Penelitian Agro Ekonomi 29(2):83-98, doi:10.21082/fae.v29n2.2011.83-98 (in Indonesian).

Menandro, L.M.S., de Moraes, L.O., Borges, C.D., Cherubin, M.R., Castioni, G.A. and Carvalho, J.L.N., 2016. Soil macrofauna responses to sugarcane straw removal for bioenergy production. BioEnergy Research 12:944-957, doi:10.1007/s12155-019-10053-2.

Mindawati, N., Indrawan, A., Mansur, I. and Rusdiana, O. 2010. Analysis of soil characteristics under Eucalyptus urograndis stand. Jurnal Tanaman Hutan 3(1):13-22 (in Indonesian).

Mokany, K., Raison, R.J. and Prokushin, A.S. 2009. Critical analysis of roots: Shoot ratios in terrestrial biomes. Global Change Biology 12(1):84-96, doi:10.1111/j.1365-2486.2005.001043.x.

Mutuo, P.K., Cadisch, G., Albrecht, A., Palm, C.A. and Verchot, L. 2005. Potential of agroforestry for carbon sequestration and mitigation of greenhouse gas emissions from soils in the tropics. Nutrient Cycling in Agroecosystems 71:45-54, doi:10.1007/s10705-004-5285-6.

Nusroh, Z. 2007. Diversity study of soil macrofauna across different food crops in dry land during the rainy season. Repository of UNS-Surakarta (in Indonesian).

Orwa, C., Mutua, A., Kindt, R., Jamnadass, R. and Anthony, S. 2009. Agroforestry Database: A Tree Reference and Selection Guide Version 4.0. World Agroforestry Centre, Kenya.

Pancelli, MA., de Melo Prado, R., Alves Flores, R.A., de Almeida, H.J., Leandro Rosatto Moda, L.R. and de Souza Junior, JP.2015. Growth, yield and nutrition of sugarcane ratoon as affected by potassium in a mechanized harvesting system Australian Journal of Crop Science 9(10):915-924.

Panosso, A.R., Marques Jr, J., Milori, D.M.B.P., Ferraudo, A.S., Barbieri, D.M., Pereira, G.T. and La Scala, Jr. N. 2011. Soil CO2 emission and its relation to soil properties in sugarcane areas under slash-and-burn and green harvest. Soil and Tillage Research 111:190-196, doi:10.1016/j.still.2010.10.002.

Parwi, Muhammad, Dewanti, F.D.and Priyadharsini, R. 2022. Soil chemical properties and microbial biomass respond during land use change. IOP Conference Series: Earth and Environmental Science 985(2022):012032, doi:10.1088/1755-1315/985/1/012032.

Patricio, J.H.P. 2014. How much soil organic carbon is there in agricultural lands? A case study of a prime agricultural province in Southern Philippines. AES Bioflux 6(3):194-208.

Prayogo, C., Kusumawati, I.A., Qurana, Z., Kurniawan, S. and Arfarita, N. 2021. Does different management and organic inputs in the agroforestry system impact the changes in soil respiration and microbial biomass carbon?. IOP Conference Series: Earth and Environmental Science 743(1):012005, doi:10.1088/1755-1315/743/1/012005.

Prayogo, C., Sholehuddin, N., Putra, E.Z.H.S. and Rachmawati, R. 2019. Soil macrofauna diversity and structure under different management of pine-coffee agroforestry system Journal of Degraded and Mining Lands Management 6(3):1727-1736, doi:10.15243/jdmlm.2019.063.1727.

Prayogo, C., Waskitho, A.H. and Muthahar, C. 2021. The consequence of increasing tree diversity was reducing basal tree area across different management of the agroforestry system of Bangsri Wathershed. IOP Conference Series: Earth and Environmental Science 743(1):012050, doi:10.1088/1755-1315/743/1/012050.

Robinson, D.A., Thomas, A., Reinsch, S., Lebron, I., Feeney, C.J., Maskell, L.C. Wood, C.M. Seaton, F.M., Emmett, B.A. and Cosby, B.J. 2022. Analytical modelling of soil porosity and bulk density across the soil organic matter and land‑use continuum. Scientific Reports 12; Article number: 7085, doi:10.1038/s41598-022-11099-7.

Sales, R.F., Lasco, R.D. and Banaticla, M.R.N. 2004. Carbon Storage and Sequestration Potential of Smallholder Tree Farms on Leyte Island, The Philippines. ACIAR Smallholder Forestry Project. http://www.worldagroforestrycentre.org.

Sari, R.R., Hairiah, K., Widianto, Rudianto, S. and Rahman, F. 2011. The potency of natural forest and agroforestry as carbon stocks in Prigen, Pasuruan. Proceeding of Seminar Dies Natalis 47. Faculty of Forestry UGM-Yogyakarta (in Indonesian).

Segnini, A., Carvalho, J.L.N., Bolonhezi, D., Milori, D.M.B.P., da Silva, W.T.L. Simoes, M.L., Cantarella, H., de Maria, I.C. and Martin-Neto, L. 2013. Carbon stock and humification index organic matter are affected by sugarcane straw and soil management. Scientia Agricola 70(5):321-326, doi:10.1590/S0103-90162013000500006.

Shively, G.E. 2003. Assessing the prospects for carbon sequestration in the Manupali Watershed, Philippines. Sustainable Agriculture and Natural Resource Management Collaborative Research Support Program (SANREM CRSP). Research Brief 2003 No. 13.

Siqueira, G.M., Silva, E.F.F., Moreira, M.M., Santos, G.A.A. and Silva, R.A. 2016. Diversity of soil macrofauna under sugarcane monoculture and two different natural vegetation types. African Journal of Agricultural Research 11(3):2669-2677.

Smith, K.A. 2000. Soil and Environmental Analysis: Physical Methods, Revised, and Expanded (2nd ed.). CRC Press. doi:10.1201/9780203908600.

Sudomo, A. and Handayani, W. 2013. Soil characteristics on four types of tree stand constitute Kapulaga-based agroforestry system (Amomum compactum Soland ex Maton). Jurnal Penelitian Agrovorestry 1:1-11 (in Indonesian).

Sugiyarto, Efendi, M., Mahajoenao, E., Sugito Y., Handayanto, E. and Agustina, L. 2007. Preference of soil macrofauna to crop residues at different light intensities. Biodiversitas 6(4):96-100, doi:10.13057/biodiv/d080204 (in Indonesian).

Sugiyarto. 2000. Diversity of soil macrofauna across different Sengon stand ages at RPH Jatirejo-Kediri. Biodiversitas 1(2):47-53 (in Indonesian).

Suin, M.N. 2012. Soil Fauna Ecology. Bandung: Bumi Aksara (in Indonesian).

Suman, A., Singh, K.P., Singh, P. and Yadav, R.L. 2008. Carbon input, loss and storage in sub-tropical Indian Inceptisol under multi-ratooning sugarcane. Indian Institute of Sugarcane Research 102(2):221-226, doi:10.1016/j.still.2009.02.008.

Suprayogo, D, Azmi, E.N., Ariesta, D.A., Sutejo, Y.A., Hakim A.L., Prayogo, C. and McNamara, N.P. 2020 Tree and plant interactions in the agroforestry system: does the management of coffee intensification disrupt the soil hydrological system and pine growth. IOP Conference Series Earth and Environmental Science 449(1):012045, doi:10.1088/1755-1315/449/1/012045.

Susilo, F.X. Hariri, A.M., Indriyati, and Wibowo, L. 2005. Diversity and Abundance of Beetles in Sumberjaya, Lampung – Indonesia. Paper presented at Conservation and Sustainable Management of Below-ground Biodiversity (CSM-BGBD) Annual Meeting, Manaus Brazil, 11-16 April 2005. 10 pp.

Sutaryo, D. 2009. Biomass Calculation: An Introduction to Carbon Studies and Carbon Trading. Wetlands International Indonesia Programme, Bogor (in Indonesian).

Torres-Salinas, D. 2013. On the use of Biplot analysis for multivariate bibliometric and scientific indicators. Journal of the American Society for Information Science and Technology 64(7):1468-1479, doi:10.1088/1755-1315/449/1/012045.

Tresnawan, H. and Rosalina, U. 2002. Estimation above ground biomass at primary forest ecosystem and cut over forest (Studi Kasus Hutan Dusun Aro, Jambi). Jurnal Manajemen Hutan Tropika 8(1):15-29 (in Indonesian).

Van Noordwijk, M. and Hairiah, K. 2000. Tree-soil- crop interactions. Lecture Note 3, World Agroforestry Centre (ICRAF), Bogor (http://www.worldagroforestry. org/sea/publication.asp).

Van Noordwijk, M., Hoang, M.H., Neufeldt, H., Öborn, I. and Yatich .T. 2011. How trees and people can co-adapt to climate change: reducing vulnerability through multifunctional agroforestry landscapes. Nairobi: World Agroforestry Centre (ICRAF).

Vieira, S.A., Alves, L.F., Aidar, M., Araújo, L.S., Baker, T., Batista, J.L.F., Campos, M.C., Camargo, P.B., Chave, J., Delitti, W.B.C., Higuchi, N., Honorio, E., Joly, C.A., Keller, M., Martinelli, L.A., de Mattos, E.A., Metzker, T., Phillips, O., dos Santos, F.A.M., Shimabukuro, M.K., Silveira, M. and Trumbore, S.E. 2008. Estimation of biomass and carbon stocks: the case of the Atlantic Forest. Biota Neotropica 8(2):31-39, doi:10.1590/S1676-06032008000200001.

Wahyudi, and Sudin, P. 2013. Comparison of agroforestry system, intensive monoculture, and conventional monoculture in development of sengon forest. Proceeding of Nasional Seminar on Agroforestry 165-171 (in Indonesian).

Wibowo, Y.S., Kesumadewi, A.A.I. and Suwastika, A.A.N.G. 2021. Soil macrofauna community structure and biodiversity on organic and conventional vegetable land in Bedugul, Bali Island. International Journal of Education and Research 9 (7):103-114.

Yusuf, M., Sulityawati, E. and Suhaya, Y. 2014. Distribution above and below ground biomass of surian (Toona sinensis Roem). Jurnal Matematika & Sains 19(2):69-75 (in Indonesian).

Downloads

Submitted

26-05-2022

Accepted

24-08-2022

Published

01-10-2022

How to Cite

Prayogo, C., & Arfarita, N. (2022). The conversion of monoculture sugarcane to a tree-based agroforestry system increases total carbon sequestration and soil macrofauna population. Journal of Degraded and Mining Lands Management, 10(1), 3933–3944. https://doi.org/10.15243/jdmlm.2022.101.3933

Issue

Section

Research Article