Improved the coconut shell biochar properties for bio-electricity generation of microbial fuel cells from synthetic wastewater

Authors

  • Junjira Thipraksa Microbial fuel cell & Bioremediation Laboratory, Faculty of Science, Thaksin University, Thailand
  • Pimprapa Chaijak Microbial Technology for Agriculture, Food and Environment Research Center, Thaksin University, Thailand

DOI:

https://doi.org/10.15243/jdmlm.2022.094.3613

Keywords:

biochar, coconut shell, electrode, microbial fuel cell

Abstract

A microbial fuel cell (MFC) is a green device that utilizes chemical energy in organic materials to generate electricity. The low-cost electrode used in this study was made from agricultural waste, coconut shells. The electrochemical properties were improved by combining oxidizing agents and microwave heating processes. The modified coconut shell electrode outperformed virgin biochar by 30.89-fold (230.13±10.11 m2/g). The maximum open-circuit voltage, current density, and power density are respectively 995.00±5.00 mV, 841.67±14.43 mA/m2, and 283.42±9.67 mW/m2. This study demonstrated that modified coconut shell biochar could be used as a low-cost alternative electrode for electricity generation.

References

Adorna, J., Borines, M., Dang, V.D. and Doong, R.A. 2020. Coconut shell derived activated biochar-manganese dioxide nanocomposites for high performance capacitive deionization. Desalination 492:114602, doi:10.1016/j.desal.2020.114602.

Allam, F., Elnouby, M., El-Khatib, K.M., El-Badan, D.E.E. and Sobry, S.A. 2020. Water hyacinth (Eichhornia crassipse) biochar as an alternative cathode electrocatalyst in an air-cathode single chamber microbial fuel cell. International Journal of Hydrogen Energy 45(10):5911-5927, doi:10.1016/j.ijhydene.2019.09.164.

Ananthi, V., Balaji, P., Sindhu, R., Kim, S.H., Pugazhendhi, A. and Arun, A. 2021. A critical review on different harvesting techniques for algal based biodiesel production. Science of the Total Environment 780:146467, doi:10.1016/j.scitotenv.2021.146467.

Baharum, N.A., Nasir, H.M., Ishak, M.Y., Isa, N.M., Hassan, M.A. and Aris, A.Z. 2020. Highly efficient removal of diazinon pesticide from aqueous solutions by coconut shell-modified biochar. Arabian Journal of Chemistry 13(7):6106-6121, doi:10.1016/j.arabjc.2020.05.011.

Chaijak, P., Sato, C., Lertworapreecha, M., Sukkasem, C., Boonsaweng, P. and Paucar, N. 2020. Potential of biochar-anode in a ceramic-separator microbial fuel cell (CMFC) with a laccase-based air cathode. Polish Journal of Environmental Studies 29(1):499-503, doi:10.15244/pjoes/99099.

Eliato, T.R., Pazuki, G. and Majidian, N. 2016. Potassium permanganate as an electron receiver in a microbial fuel cell. Energy Sources, Part A 38(5):644-651, doi:10.1080/15567036.2013.818079.

Gong, X., Zhang, Z. and Wang, H. 2021. Effects of Gleditsia sinensis pod powder, coconut shell biochar and rice husk biochar as additives on bacterial communities and compost quality during vermicomposting of pig manure and wheat straw. Journal of Environmental Management 295:113136, doi:10.1016/j.jenvman.2021.113136.

Halfon, E.B. and Suss, M.E. 2019. Measurements of the electric conductivity of an electrode as it transitions between static and flowable modes. Electrochemistry Communications 99:61-64, doi:10.1016/j.elecom.2018.12.016.

Hao, Z., Wang, C., Yan, Z., Jiang, H. and Xu, H. 2018. Magnetic particles modification of coconut shell-derived activated carbon and biochar for effective removal of phenol from water. Chemosphere 211:962-969, doi:10.1016/j.chemosphere.2018.08.038.

Hasana, N.H., Wahi, R., Yusof, Y., Yusof, W.R.W. and Manan, Z.A.A. 2020. Coconut shell biochar for removal of Cu(II) from aqueous solution. Pakistan Journal of Analytical & Environmental Chemistry 21(2):280-292, doi:10.21743/pjaec/2020.12.30.

Huggins, T., Wang, H., Kearns, J., Jenkins, P. and Ren, Z.J. 2014. Biochar as a sustainable electrode material for electricity production in microbial fuel cells. Bioresource technology 157:114-119, doi:10.1016/j.biortech.2014.01.058.

Jadhav, G.S. and Ghangrekar, M.M. 2009. Performance of microbial fuel cell subjected to variation in pH, temperature, external load and substrate concentration. Bioresource Technology 100:717-723, doi:10.1016/j.biortech.2008.07.041.

Jiang, J.W., Zhang, S.X., Li, S.N., Zeng, W.L., Li, F.X. and Wang, W. 2022. Magnetized manganese-doped watermelon rind biochar as a novel low-cost catalyst for improving oxygen reduction reaction in microbial fuel cells. Science of the Total Environment 802:149989, doi:10.1016/j.scitotenv.2021.149989.

Jiao, Y.L., Hu, Y.S., Han, L.J. and Zhou, M.H. 2020. Activated carbon derived from rice husk as efficient oxygen reduction catalyst in microbial fuel cell. Electroanalysis 32(12):2969-2975, doi:10.1002/elan.202060409.

Jung, K.W., Lee, S.Y. and Lee, Y.L. 2018. Hydrothermal synthesis of hierarchically structured birnessite-type MnO2/biochar composites for the adsorptive removal of Cu(II) from aqueous media. Bioresource Technology 260:204-212, doi:10.1016/j.biortech.2018.03.125.

Khudzari, J.M., Gariepy, Y., Kurian, J., Tartakovsky, B. and Raghavan, G.S.V. 2019. Effects of biochar anodes in rice plant microbial fuel cells on the production of bioelectricity, biomass, and methane. Biochemical Engineering Journal 141:190-199, doi:10.1016/j.bej.2018.10.012.

Kim, M., Song, Y.E., Li, S. and Kim, J.R. 2021. Microwave-treated expandable graphite granule for enhancing the bioelectricity generation of microbial fuel cells. Journal of Electrochemical Science and Technology 12(3):297-301, doi:10.33961/jecst.2020.01739.

Kurmar, M., You, S., Beiyuan, J., Lou, G., Gupta, J., Kumar, S., Singh, L., Zhang, S. and Tsang, D.C.W. 2021. Lignin valorization by bacterial genus Pseudomonas: State-of-the-art review and prospects. Bioresource Technology 320:124412, doi:10.1016/j.biortech.2020.124412.

Lee, H.S. and Shin, H.S. 2021. Competitive adsorption of heavy metals onto modified biochars: comparison of biochar properties and modification methods. Journal of Environmental Management 299:113651, doi:10.1016/j.jenvman.2021.113651.

Li, H., Dong, X., da Silva, E.B., de Oliveira, L.M., Chen, Y. and Ma, L.Q. 2017. Mechanisms of metal sorption by biochar characteristics and modifications. Chemosphere 178: 466-478, doi:10.1016/j.chemosphere.2017.03.072.

Li, Q., Liu, Z., Sun, Y., Yang, S. and Deng, C. 2021. A review on temperature control of proton exchange membrane fuel cells. Processes 9:235, doi:10.3390/pr9020235.

Maddalwar, S., Nayak, K.K., Kumar, M. and Singh, L. 2021. Plant microbial fuel cell: opportunities, challenges, and prospects. Bioresource Technology 341:125772, doi:10.1016/j.biortech.2021.125772.

Mianowski, A., Owczarek, M. and Marecka, A. 2007. Surface area of activated carbon determined by the iodine adsorption number. Energy Source, Part A 29(9):839-850, doi:10.1080/00908310500430901.

Mishra, A., Kumar, M., Bolan, N.S., Kapley, A., Kumar, R. and Singh, L. 2021. Multidimensional approaches of biogas production and up-gradation: Opportunities and challenges. Bioresource Technology 338:125514, doi:10.1016/j.biortech.2021.125514.

Naveenkumar, M., Senthikumar, K. and Microbial fuel cell for harvesting bio-energy from tannery effluent using metal mixed biochar electrode. Biomass & Bioenergy 149:106082, doi:10.1016/j.biombioe.2021.106082.

Nepal, R., Phoumin, H. and Khatri, A. 2021. Sustainability green technological development and deployment in the association of southeast Asian economies (ASEAN)-at crossroads or roundabout?. Sustainability 13(2):758, doi:10.3390/su13020758.

Ni, B.J., Huang, Q.S., Wang, C., Ni, T.Y., Sun, J. and Wei, W. 2019. Competitive adsorption of heavy metals in aqueous solution onto biochar derived from anaerobically digested sludge. Chemosphere 219:351-357, doi:10.1016/j.chemosphere.2018.12.053.

Nuryana, D., Alim, M.F.R., Yahayu, M., Zaini, M.A.A., Sulong, R.S.R., Abd Aziz, M.F.S., Prasetiawan, H., Zakaria, Z.A. and Kusumaningtyas, R.D. 2020. Methylene blue removal using coconut shell biochar synthesized through microwave-assisted pyrolysis. Jurnal Teknologi-Science & Engineering 82(5):31-41, doi:10.11113/jt.v82.14359.

Prabha, J., Kumar, M. and Tripathi, R. 2021. Bioremediation for environmental sustainability. In: Saxena, G., Kumar, V. and Shan, M.P. (eds), Toxicity, Mechanisms of Contaminants Degradation, Detoxification and Challenges. Elsevier B.V., Amsterdam, Netherland, pp. 637-653.

Rabaey, K., Angenent, U., Schroder, U. and Keller, J. 2009. Bioelectrochemical systems. In: Rabaey, K., Angenent, U., Schroder, U. and Keller, J. (eds), Bioelectrochemical Systems. IWA publishing, London, England.

Rui, B., Yang, M., Jia, Y., Shi, Y., Histed, R., Liao, Y., Xie, J., Lei, F. and Fan, L. 2020. Reduced graphene oxide-modified biochar electrodes via electrophoretic deposition with high rate capacity for supercapacitors. Journal of Applied Electrochemistry 50:407-420, doi:10.1007/s10800-020-01397-1.

Salehmin, M.N.I., Lim, S.S., Satar, I. and Daud, W.R.W. 2021. Pushing microbial desalination cells towards field application: Prevailing challenges, potential mitigation strategies, and future prospects. Science of the Total Environment 2021:143485, doi:10.1016/j.scitotenv.2020.143485.

Sciarria, T.P., de Oliveira, M.A.C., Mecheri, B., D’Epifanio, A., Goldfarb, J.L. and Adani, F. 2020. Metal-free activated biochar as an oxygen reduction catalyst in single chamber microbial fuel cells. Journal of Power Sources 462:228183, doi:10.1016/j.jpowsour.2020.228183.

Sizmur, T., Fresno, T., Akgul, G., Frost, H. and Moreno-Jimenez, E. 2017. Biochar modification to enhance sorption of inorganics from water. Bioresource Technology 246:34-47, doi:10.1016/j.biortech.2017.07.082.

Sonawane, J.M., Ezugwu, C.I. and Ghosh, P.C. 2020. Microbial fuel cell-based biological oxygen demand sensors for monitoring wastewater: Sate-of-the-art and practical applications. ACS Sensors 5:2297-2316, doi:10.1080/09593330902732077.

Tan, W.H., Chong, S., Fang, H.W., Pan, K.L., Mohamad, M., Lim, J.W., Tiong, T.J., Chan, Y.J., Huang, C.M. and Yang, T.C.K. 2021. Microbial fuel cell technology–A critical review on scale-up issues. Processes 9(6):985, doi:10.3390/pr9060985.

Wang, S.W., Zhong, S., Zheng, X.Y., Xiao, D., Zheng, L.L., Yang, Y., Zhang, H.D., Ai, B.L. and Sheng, Z.W. 2021. Calcite modification of agricultural waste biochar highly improves the adsorption of Cu(II) from aqueous solution. Journal of Environmental Chemical Engineering 9(5):106215, doi:10.1016/j.jece.2021.106215.

Wang. C., Liu, Y., Gao, X., Chen, H., Xu, X. and Zhu, L. 2018. Role of biochar in the granulation of anaerobic sludge and improvement of electron transfer characteristics. Bioresource Technology 268:28-35, doi:10.1016/j.biortech.2018.07.116.

You, H.Y., Zhang, Y., Li, W.Y., Li, Y., Ma, Y. and Feng, X.D. 2019. Removal of NO3- N in alkaline rare earth industry effluent using modified coconut biochar. Water Science and Technology 80(4):784-793, doi:10.2166/wst.2019.321.

Yuan, Y., Yuan, T., Wang, D., Tang, J. and Zhou, S. 2013. Sewage sludge biochar as an efficient catalyst for oxygen reduction reaction in an microbial fuel cell. Bioresource Technology 144:115-120, doi:10.1016/j.biortech.2013.06.075.

Zhang, M., Gao, B., Varnoosfaderani, S., Hebard, A., Yao, Y. and Inyang, M. 2013. Preparation and characterization of a novel magnetic biochar for arsenic removal. Bioresource Technology 130: 457-462, doi:10.1016/j.biortech.2012.11.132.

Zhang, W., Zou, Y., Yu, C. and Zhong, W. 2019. Nitrogen-enrich compact biochar-based electrode materials for supercapacitors with ultrahigh volumetric performance. Journal of Power Sources 439:227067, doi:10.1016/j.jpowsour.2019.227067.

Zhang, Z.X., Yu, G.W., Mo, W.T., Zhang, C.J., Huang, H., Li, S.G., Gao, M., Lu, X.J., Zhang, B.P. and Zhu, H.P. 2019. Enhanced phosphate sequestration by Fe(III) modified biochar derived from coconut shell. RSC Advances 9(18):10425-10436, doi:10.1039/c8ra10400j.

Downloads

Submitted

07-03-2022

Accepted

11-04-2022

Published

01-07-2022

How to Cite

Thipraksa, J., & Chaijak, P. (2022). Improved the coconut shell biochar properties for bio-electricity generation of microbial fuel cells from synthetic wastewater. Journal of Degraded and Mining Lands Management, 9(4), 3613–3619. https://doi.org/10.15243/jdmlm.2022.094.3613

Issue

Section

Research Article