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Abstract: Land use/land cover (LULC) is one of the important variables affecting human life and the 
physical environment. Modelling of change in LULC is an important tool for environmental management 
and for supporting spatial planning in environmentally important areas. In this study, a new approach was 
proposed to improve the accuracy and reliability of LULC simulation by integrating Markov cellular 
automata (Markov-CA) and landform-based models. Landform characteristics, positions and patterns 
influence LULC changes that are important in understanding the effects of environmental change and other 
physical factors. The results of this study showed that integration of Markov-CA and landform-based 
models increased correct rejection as a component of agreement and reduced incorrect hits and false alarms 
as components of disagreement for the percentage of the study area in each resolution (multiple of native 
pixel size). Correctly simulated hits as a component of agreement change also increased, even though nine 
of the 18 pairs of three-map comparisons showed a decline in this aspect. Meanwhile, misses as a 
component of disagreement change simulated as persistence also increased, although six of the 18 pairs of 
data showed a decline. Based on the overall three-map comparison analysis, there was an increase in the 
figure of merit (FOM) values after the Markov-CA and landform-based models were integrated, although 
six of the 18 pairs of data indicated a decrease in FOM values. This indicates improved results after 
integration of Markov-CA and landform-based models. 
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Introduction  

One of the fundamental and interrelated variables 
that affect the human and physical environment is 
LULC. LULC has an influence on the ecosystem 
and also on global environmental and human 
influences related to climate change (Vitousek, 
1994; Skole, 1994; Penner, 1994; Chapin et al., 
2000; Foody, 2002; Foley et al., 2005; Verburg, 
2009). LULC change models are important tools 
for the integration of environmental management 

and can be used to support causal analysis in 
respect to the dynamics of LULC change. In 
addition, the prediction of LULC is an important 
parameter for LULC policy and planning (Verburg 
et al., 2002; 2004).  

To improve the accuracy and reliability of 
LULC simulations, several models using various 
approaches have been developed, such as neural-
network-based CA models (Li and Yeh, 2002), 
multi-agent systems (Tian et al., 2011), the 
combined top-down system-dynamics model, the 
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bottom-up cellular automata model and the 
artificial neural-network model (Wang et al., 
2011), ant colony optimization, Markov chain and 
CA models (Yang et al., 2012), graphics 
processing units and CA models (Li et al., 2012), 
chi-squared automatic integration detection 
decision tree, Markov chain and CA models 
(Abubakr and Biswajeet, 2015), integration of 
landscape pattern indexes, Markov chain and CA 
(Yang et al., 2014) and others. 

A new approach is proposed in this study to 
improve the accuracy and reliability of LULC 
simulation. The integration of Markov-CA and 
landform-based models were used to create LULC 
simulation. Landforms are defined as specific 
geomorphic features of the earth's surface that have 
a characteristic, recognizable shape and are formed 
by natural processes, such as plains, mountains, 
hills and valleys (Blaszczynski, 1997; Tagil and 
Jenness, 2008). Landform structures reflect the 
cumulative influences of geomorphic, geological, 
hydrological, ecological and soil-forming 
processes (MacMillan et al., 2000; MacMillan and 
Shary, 2009). The relationships between LULC 
and landform are strongly correlated and provide 
important keys to understanding the effects of 
environmental change and other physical aspects 
and important information to support the 
management of natural resources and the 
environment. In addition, the characteristics, 
positions and patterns of landforms as objects that 
exist on the surface of the earth can affect changes 
in LULC and can contribute to the formulation of 
environmental policy. LULC change models can 
be used as tools to support analysis of the causes 
and consequences of LULC change and the levels 
and spatial patterns of LULC change and to 
estimate its impact. Furthermore, modelling is 
useful for better understanding the functions of 
LULC systems and for supporting LULC planning 
and policies. In addition, it can be used to analyze 
changing LULC and thus to make more informed 
decisions (Blaszczynski, 1997; Brabyn, 1998; 
Tunçay et al., 2014).  

An integration experiment between the 
Markov-CA and landform-based models was 
performed in this study to demonstrate the 
influence of landform in creating simulated future 
LULC. The case study area was chosen to create 
and demonstrate a novel LULC model in the 
upstream Citarum watershed, West Java, 
Indonesia.  

Study area 

A case study to demonstrate the feasibility of the 
integration of Markov-CA and landform-based 
models was undertaken by simulating LULC in the 

upstream Citarum watershed, West Java, Indonesia 
(Figure 1). The location was selected for this 
demonstration because of its varied landform types 
(including plains, hills, mountains and valleys) and 
the dynamics of different LULC changes (primary 
forest, secondary forest and mixed garden, 
plantation, wet agricultural land, dry land farming, 
built land, and water bodies) present in the area. 

Materials and Methods 

Data availability 

LULC information for 1996, 2000, 2003 and 2009 
taken from the study conducted by Yulianto et al. 
(2018) was used as the input data for this study. 
Multi-temporal Landsat images with a resolution 
of 30 m and at Level 1 Geometric (L1G) with 
sensor TM and ETM+ (path/row: 121/65 and 
122/65) were used to derive the LULC information 
for the study. Seven classes of LULC were used: 
class 1: built land; class 2: primary forest; class 3: 
secondary forest and mixed garden; class 4: 
plantation; class 5: wet agricultural land; class 6: 
dryland farming; class 7: water body. These types 
of LULC were identified for this study based on the 
maximum likelihood classification approach 
(Table 1) (complete and detailed information is 
presented by Yulianto et al. (2018)).  

Furthermore, Landsat 8 OLI/TIRS imagery 
was used as the input for LULC classifications in 
2017 using the maximum likelihood approach. In 
this study, the LULC data for 1996, 2000 and 2003 
were used as inputs to integrate experiments 
between the Markov-CA and landform-based 
models to demonstrate the influence of landform in 
changes to future LULC. Meanwhile, LULC data 
for 2009 and 2017 were used as the base reference 
to simulate LULC (Figure 2). Landsat 8 OLI/ TIRS 
images were provided by the Remote Sensing 
Technology and Data Center (LAPAN). The input 
data used to create the landform-based model was 
SRTM30 DEM, provided by the US Geological 
Survey (USGS). In addition, these data were also 
used for inputs in making potential map transitions 
(with elevation and slope parameters) and were 
then combined with topographic maps (with 
parameters of paths, rivers and others). The 
topographic map was provided by the Indonesian 
Geospatial Information Agency (BIG). Detail of 
the types of spatial data used in this study can be 
found in Table 2. 

Markov-CA model 

The Markov-CA model is the combination of 
Markov chain and cellular automata approach to 
simulate and predict LULC. A Markov chain is a 
stochastic model based on an evolutionary time 
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trend that can describe the probability of object 
change from one class to another, e.g., dry land 
farming to built land (Thomas and Laurance, 2006; 
Behera et al., 2012). Meanwhile, a cellular 
automaton is an aspect of the geospatial elements 
that focuses on the variation and dynamics of 
object change. It can be used to simulate 
characteristics of spatial-temporal objects in a 
complex system which cannot be represented by a 
specific equation model (Mousivand et al., 2007; 
Arsanjani et al., 2013; Yang et al., 2014). There are 

three stages to the implementation of the Markov-
CA model for simulating and predicting LULC: (a) 
calculate the transition area matrix of LULC; (b) 
create the potential transition map; and (c) simulate 
LULC using Markov-CA (Thomas and Laurence, 
2006; Behera et al., 2012; Yang et al., 2014; 
Keshtkar and Voigt, 2016; Yulianto et al., 2016; 
2018). In this study, the Markov-CA model for 
simulating and predicting LULC was processed by 
IDRISI Andes software, developed by Clark Labs 
at Clark University. 

 

 
Figure 1. The location of the study area of upstream Citarum watershed, West Java, Indonesia 

 
 

 

Table 1. LULC descriptions used in this study 

Class LULC type Description 
1 Built land Consists of all residential, commercial and industrial areas, villages, 

settlements, transportation infrastructure and others. 
2 Primary forest Consists of natural forests that have not been disrupted by human 

exploitation. 
3 Secondary forest and 

mixed garden 
Consists of industrial plantation forests and some garden planting, 

coconuts, fruits and others. 
4 Plantation Consist of conservation land, tea plantations and others. 
5 Wet agricultural land Consists of land that requires much water for its planting pattern: 

irrigated rice fields, rice terraces and others. 
6 Dryland farming Consists of land that requires little water for its cropping pattern: 

fields, moorland and others. 
7 Water body Consists of all water sources, rivers, reservoirs, ponds and others. 
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Figure 2. LULC maps used in this study: A) LULC in 1996; B) LULC in 2000; C) LULC in 2003; D) 
LULC in 2009; E) LULC in 2017. A), B) and C) were used as inputs to integrate experiments between the 
Markov-CA and landform-based models in this study. Meanwhile, D) and E) were used as base references 
to simulate LULC. Class 1: built land; class 2: primary forest; class 3: secondary forest and mixed garden; 
class 4: plantation; class 5: wet agricultural land; class 6: dryland farming; class 7: water body  

 

Calculation of transition area matrix using the 
Markov chain 

In the first stage, the transition area matrix of  
LULC from year ( t ) to ( t + i ) can be predicted by 
the Markov chain model, which is a raster-based 
spatial analysis. In this study, pairs of LULC maps 
for 1996, 2000 and 2003 were applied to calculate 
the transition area matrix used to simulate and 
predict LULC in 2009 and 2017, with a 
proportional error of 15%. According to Keshtkar 

and Voigt (2016), the results of matrix records 
show the number of pixels that are expected and 
estimate replacements from one class object to 
another in a specified period in the future and the 
trends observed in the past. 

Generated transition potential map 

The information provided by the transition 
potential map can be used to control for the spatial 
distribution of LULC. In the second stage, the 
transition potential map was generated by GIS. 
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There are three approaches used in GIS analysis: 
multi-criteria evaluation (MCE), analytical 
hierarchy process (AHP) and fuzzy membership 
functions. The MCE approach can be used to 
determine decision support in situations where a 

single decision maker is faced with many criteria 
usually not compatible and dependent on the 
decision of all decision makers. Furthermore, the 
weight calculation in the MCE approach is based 
on the AHP approach (Satty and Vargas, 2001).  

 

Table 2. Types of spatial data used in this study 

Data type Acquisition 
date 

Spatial 
resolution/ 
map scale 

Explanation Source 

LULC in 1996 03 August 1996 
and 25 July 

1996 

30 m The result of Landsat 5 TM 
classification from 

Path/Row:121/65 and 122/65 

Yulianto et al. 
(2018) 

LULC in 2000 22 and 28 
August 1990 

30 m The result of Landsat 7 ETM+ 
classification from  

Path/Row: 121/65 and 122/65 

Yulianto et al. 
(2018) 

LULC in 2003 09 and 16 
August 2003 

30 m The result of Landsat 5 TM 
classification from 

Path/Row:121/65 and 122/65 

Yulianto et al. 
(2018) 

LULC in 2009 29 July and 07 
August 2009 

30 m The result of Landsat 5 TM 
classification from  

Path/Row: 121/65 and 122/65 

Yulianto et al. 
(2018) 

Landsat 8 OLI/ 
TIRS 

19 and 26 
August 2017 

30 m Path/Row: 121/65 and 122/65 LAPAN 

SRTM30 DEM 11 February 
2000 

30 m - USGS 

Topographic 
map 

1998 1:25,000 - BIG 

 

Table 3.  Extracted weights based on MCE, AHP and fuzzy membership functions. Modified from Gemitzi 
et al. (2011), Keshtkar and Voigt (2016), and Shahabi et al. (2016)  

Factor or 
parameter 

Type of function Control points Weight 

Elevation* Sigmoidal 700–800 m (highest suitability) 
800–1200 m (decreasing suitability) 

> 1200 m (no suitability) 

0.16 

Slope Sigmoidal < 3% (highest suitability) 
3–15% (decreasing suitability) 

> 15% (no suitability) 

0.18 

Distance from the 
nearest road 

J-shaped < 500 m (highest suitability) 
500–1000 m (decreasing suitability) 

> 1000 m (no suitability) 

0.31 

Distance from 
water body 

Linear > 1000 m (highest suitability) 
200–1000 m (decreasing suitability) 

< 200 m (no suitability) 

0.14 

Distance from 
urban area 

Linear < 5 km (highest suitability) 
5–10 km (decreasing suitability) 

> 10 km (no suitability) 

0.21 

 
 

 
The AHP approach, as part of MCE, was applied 
and used to determine the weights of the factors or 
parameters by means of pairwise assessments. A 
pairwise comparison matrix was created by 

assigning one row and one column for each factor 
(Mesgari et al., 2008). Meanwhile, fuzzy 
membership functions were used for 
standardization of factors or parameters, for real-

* Elevation is calculated at an altitude of more than 700 m above sea level in the study area 
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valued functions whose value is between 0 and 1. 
The selection of a suitable membership function for 
the fuzzy set is one of the most important activities 
in fuzzy logic, it is the responsibility of the user to 
select the function that is the best representation for 
the fuzzy concept to be modelled (Mesgari et al., 
2008; Oinam et al., 2014; Yeganeh and Sabri, 
2014). In this study, the factors or parameters used 
to create the potential transition map were 
elevations, slope, distance from nearest roads, 
distance from water bodies and distance from 
urban areas.  

Technically, the stages in determining the 
weights in this study were as follows: (a) create a 
standardization of parameters with values between 
0 and 1 based on fuzzy membership functions; (b) 
the results of the standardization of parameters 
were then weighted using MCE to determine the 
weight that affects the trigger or inhibitor of LULC 
change in the study area; (c) determination of MCE 
to make the potential transition map, carried out 
based on the AHP approach by pairwise 
assessment from the comparison matrix. The 
results of extracted weights based on MCE, AHP 
and fuzzy membership functions can be found in 
Table 3, together with the control points used to 
limit suitability for each factor or parameter.  

Simulated LULC using CA model 

In the third stage, the prediction of LULC can be 
simulated and performed using the CA model 
(Yang et al., 2014; Keshtkar and Voigt, 2016; 
Yulianto et al., 2018). Furthermore, the results of 
the transition area matrix using Markov chain and 
the potential transition map were integrated into 
this model. According to Yang et al. (2014), the 
transition rule for the Markov-CA model is as 
presented in Equation 1: 

𝑖𝑓 𝐾௝ = max  (𝐾ଵ,  𝐾ଶ, 𝐾ଷ, … , 𝐾௡ ) 𝑎𝑛𝑑 𝐿௜,௝ <

 
௅೔,ೕ

்
 𝑡ℎ𝑒𝑛 𝑀௜ →  𝑀௝        .....................................  (1) 

where 𝐾௝ is the potential LULC transit to the LULC 
class j; 𝐿௜,௝ is the total area from LULC class i to 
LULC class j in the current iteration; 𝑇 is the time 
for the iteration; 𝑀௜ is the LULC class i; 𝑀௝ is the 
LULC class j.  

Landform-based model  

In the past, landform classification properties was 
measured by calculating their geometry manually. 
Recently, however, the use of computer technology 
for this process developed rapidly. New spatial 
analysis methods, the development of algorithms 
and the ease of obtaining digital elevation data 
have contributed to earth - oriented 
geomorphometrics (Horton, 1945; Miller, 1953; 
Coates, 1958; Chorley, 1972; Evans, 1972; Tagil 

and Jenness, 2008). Semi-automated landform-
based classification is one of the efforts used to 
simplify and quickly process mapping and 
classification of landforms that was previously 
carried out manually. Several aspects of the 
relevant landform classification approach are 
developed and applied with semi-automatic 
classification (MacMillan and Shary, 2009). There 
are several methods and algorithms that can be 
used for automated landform-based classification, 
such as a curvature-based approach (Ramalingan et 
al., 2006), fuzzy landforms elements (Irvin et al., 
1997; Burrough, 2000), pattern recognition 
(Jasiewicz and Stepinski, 2012), relief 
segmentation and object-based methods (Drăguţ 
and Eisank, 2012), morphometric features (Ehsani 
and Quiel, 2008), terrain clustering (Giguere and 
Dudek, 2009) and others. 

Topographic position index (TPI) is the 
landform-based model approach used in this study, 
as proposed by Guisan et al. (1999), Weiss (2000), 
Wilson and Gallant (2000). TPI landform-based 
models can illustrate the difference between 
elevation value in a pixel cell and the average 
elevation of the neighbourhoods surrounding it. A 
positive value indicates that the pixel cell has a 
value higher than the neighbouring pixels, whereas 
a negative value indicates that the pixel cell has a 
value lower than the neighbouring pixels. TPI 
value provides power by which to classify 
landscapes and morphological classes (Weiss, 
2005; Jenness, 2010; Mokarram and 
Sathyamoorthy, 2015). In detail, the definitions of 
landform classes using the TPI model can be found 
in Table 4 (Tagil and Jenness, 2008; Mokarram and 
Sathyamoorthy, 2015). Automated extraction of 
landform elements can be derived from SRTM30 
DEM data to create landform-based classification 
with the TPI approach. System for Automated 
Geoscientific Analyses (SAGA) Ver 6.3 software 
was used in this study for automatic land elements 
from TPI extraction (www.saga-gis.org). The 
algorithm used to combine TPI value in various 
neighbourhood scenarios can be presented in 
Equation (2). 

𝑃𝑟𝑜𝑏_𝑡𝑜𝑡𝑎𝑙 = ∑
௉௥௢௕_௩௔௟௨௘ೣ(೔,ೕ)

௬

௬
௫ୀଵ  .................. (2) 

where 𝑃𝑟𝑜𝑏_𝑡𝑜𝑡𝑎𝑙  is the total of probability value 
for landform model. 𝑃𝑟𝑜𝑏_𝑣𝑎𝑙𝑢𝑒௫(௜,௝) is the 
probability value in various neighbourhood 
scenario (x), (for x = 1, 2, 3, ..., y) in value for each 
pixel position (i, j).    

Integration of Markov-CA and landform-based 
models 

In this study, an approach was developed for 
improving the reliability of simulation and 



Land use simulation by the integration of Markov cellular automata and landform-based models 

 

Journal of Degraded and Mining Lands Management                                                                            1681 
 

prediction of LULC. The integration of Markov-
CA and landform-based models were applied to 
provide improved reliability of prediction (Figure 
3). There were four stages in running the 
integration process: (a) making transition 
probability maps based on a landform-based model 
(in this case TPI), which were then used to manage 
the spatial differences in LULC; (b) making a 
transition potential map, which was then used to 
manage the spatial distribution of LULC; (c) 
making a transition area matrix, obtained from 
LULC data maps for the years t - i and t in the 

Markov model structure; (d) integrating the results 
of the un-transition probability map, transition 
potential map and transition area matrix was then 
the key step in generating the local transition rule 
for the CA model used to produce simulations and 
predictions of LULC. The LULC data maps for the 
years t - i and t were used as inputs to determine the 
transition area matrix and transition probability 
matrix used in the Markov model structure. The un-
transition probability matrix for years t - i and t can 
be calculated from the results of the transition 
probability matrix for t - i and t. 

 

Table 4.  Definitions of landform classes in the TPI landform-based model (modified from Guisan et al. 
(1999), Weiss (2000), Wilson and Gallant (2000), Tagil and Jenness (2008), and De Reu et al. 
(2013) 

Classes Descriptions The probability of a 
landform class that 

influences changes in 
LULC 

Streams Small neighbourhood TPI: TPI ≤ -1 
0.11 

Large neighbourhood TPI: TPI ≤ -1 
Midslope 
drainages 

Small neighbourhood TPI: TPI ≤ -1 
0.13 

Large neighbourhood TPI: -1 < TPI < 1 
Upland 

drainages 
Small neighbourhood TPI: TPI ≤ -1 

0.15 
Large neighbourhood TPI: TPI ≥ 1 

Valleys Small neighbourhood TPI: -1 < TPI < 1 
0.16 

Large neighbourhood TPI: TPI ≤ -1 
Plains Small neighbourhood TPI: -1 < TPI < 1 

0.18 
Large neighbourhood TPI: -1 < TPI < 1, slope ≤ 5o 

Open slopes Small neighbourhood TPI: -1 < TPI < 1 
0.09 

Large neighbourhood TPI: -1 < TPI < 1, slope > 5o 
Upper slopes Small neighbourhood TPI: -1 < TPI < 1 

0.07 
Large neighbourhood TPI: TPI ≥ 1 

Local ridges Small neighbourhood TPI: TPI ≥ 1 
0.05 

Large neighbourhood TPI: TPI ≤ -1 
Midslope 

ridges 
Small neighbourhood TPI: TPI ≥ 1 

0.04 
Large neighbourhood TPI: -1 < TPI ≥ 1 

High ridges Small neighbourhood TPI: TPI ≥ 1 
0.02 

Large neighbourhood TPI: TPI ≥ 1 
 

 
Relationships between the TPI, which is a 
landform-based model, and the un-transition 
probability matrix are used to generate an un-
transition probability map. These relationships 
were calculated based on the Pearson correlation. 
There was a linear correlation between TPI and un-
transition probability matrix. The combination of 
TPI and matrix non-transition probability was done 
by a neural network algorithm to create an un-
transition probability map. The un-transition 
probability map and the transition potential maps 
were then combined by multiplying them together. 
The results of this combination could then be 
entered together with the transition area matrix to 

simulate and predict LULC in the CA model 
structure. 

Comparison of the three maps at multiple 
resolutions  

In this study, comparison of the three maps at 
multiple resolutions was used to evaluate the 
accuracy and reliability of the integration 
experiment between the Markov-CA and 
landform-based models, performed to simulate and 
predict the LULC map. The three-map comparison 
method, as proposed by Pontius et al. (2008; 2011; 
2018), requires (a) a reference map for the initial 
time (T1) at the start of the simulation for the 
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calibration of the LULC change model; (b) a 
reference map of a subsequent time (T2) at the end 
time of the simulation for the validation model; and 
(c) a simulation map of the same T2 (S2) at the end 
time of the simulation produced by the LULC 
change model. Analysis of the three-map 
comparisons showed how changes in the 
simulation maps compared with changes in the 
reference maps, which were calculated based on 
the figure of merit (FOM). FOM is the most 
appropriate approach for validating the LULC 
change model and is better than metrics such as 

producer's accuracy, user's accuracy and Kappa 
that are very commonly applied in GIS and can be 
misleading in assessing the accuracy of LULC 
change models. FOM has five components: (a) 
persistence simulated correctly (correct rejections); 
(b) persistence simulated as change (false alarms); 
(c) change simulated as change to wrong category 
(wrong hits); (d) change simulated correctly (hits); 
and (e) change simulated as persistence (misses) 
(Pontius et al., 2008; Pontius and Millones, 2011; 
2011; 2018). 

   

 

Figure 3. Flowchart of the integration experiment between the Markov-CA and landform-based models 
performed to simulate and predict the LULC map in this study 

 
 
Results  

Based on the data availability for LULC in 1996, 
2000 and 2003 (Figure 2) taken from the study 
conducted by Yulianto et al. (2018), six data-pair 
combinations were used as inputs to simulate and 
predict LULC in 2009 and 2017: (a) LULC in 1996 
and 2000 for LULC in 2009; (b) LULC in 1996 and 
2003 for LULC in 2009; (c) LULC in 2000 and 
2003 for LULC in 2009; (d) LULC in 1996 and 
2000 for LULC in 2017; (e) LULC in 1996 and 
2003 for LULC in 2017; and (f) LULC in 2000 and 
2003 for LULC in 2017. Prediction of the transition 
area matrix produced by the Markov model can 

provide information about the probability of 
changes from one LULC class to another. The 
predictions for the transition area matrix and the 
transition probability matrix indicate that the 
matrix diagonally represents the transition 
probability in LULC with the same class. 
Meanwhile, the non-diagonal matrix describes the 
transition probability in a LULC class that has the 
potential to change to another class.  

In this study, a landform-based model was 
used as the input to create the un-transition 
probability map. TPI is the landform-based model 
approach used in this study, as proposed by Guisan 
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et al. (1999), Weiss (2000), and Wilson and Gallant 
(2000). Landform classification and interpretation 
were calculated from TPI grids using four different 
neighbourhoods (100 m, 300 m, 500 m and 700 m). 
The size and shape of neighbourhoods are very 
important for analysis based on the scale of the 
features of the landforms analyzed. Small 
neighbourhoods (100 m) were used to classify 
small landforms features and to extract the edges of 
features rather than the features themselves. In 
contrast, large neighbourhoods (700 m) were used 
to identify landforms and extract terrace and 
depression features such as valleys or hills. The 
combination of TPI at the scale of small and large 
neighbourhoods is required in order to distinguish 
the classified landforms. The results of the 
classification of landforms yielded ten classes: 
streams, midslope drainages, upland drainages, 
valleys, plains, open slopes, upper slopes, local 
ridges, midslope ridges and high ridges. The results 
of the landform-based model classifications using 
TPI in various neighbourhood scenarios can be 
found in Figure 4. Meanwhile, the probability 
value of the landform model based on the 
combination of TPI on the scale of small and large 
neighbourhoods to distinguish the classified 
landforms can be found in Figure 5. The factors or 
parameters used in this study to create the potential 
transition map were elevations, slope, distance 

from the nearest roads, distance from water bodies 
and distance from urban areas. The results of GIS 
analysis based on MCE, AHP and fuzzy 
membership functions can be found in Table 3 and 
Figure 6. The results of the simulation and 
prediction of LULC generated based on the 
Markov-CA model without the integration of the 
landform-based model can be found in Figures 7A, 
7B and 7C for 2009 (with a combination of input 
data pairs for 1996, 2000 and 2003) and Figures 
8A, 8B and 8C for 2017 (with a combination of 
input data pairs for 1996, 2000 and 2003). 
Meanwhile, the results of the simulation and 
prediction of LULC generated based on the 
integration of the Markov-CA and landform-based 
models can be found in Figures 7D, 7E and 7F for 
2009 (with a combination of input data pairs for 
1996, 2000 and 2003) and Figures 8D, 8E and 8F 
for 2017 (with a combination of input data pairs for 
1996, 2000 and 2003). The results of the 
comparison of the three-map calculations at 
multiple resolutions presented in Figures 9, 10 and 
11, show how the changes in the simulation maps 
compared with the changes in the reference map. 
18 pairs of data were used for the comparison of 
the three maps at multiple resolutions: (a) a 
reference map of the initial time (T1); (b) a 
reference map of a subsequent time (T2); and (c) a 
simulation map of the same time as T2 (S2).  

 
 

  

  

  

Figure 4. Landform-based model classifications using TPI in various neighbourhood scenarios: A) TPI 
values for neighbourhoods at the scale of 100 m; B) TPI values for neighbourhoods at the scale of 300 m; 
C) TPI values for neighbourhoods at the scale of 500 m; D) TPI values for neighbourhoods at the scale of 
700 m 
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Furthermore, analysis of the calculation of FOM 
was performed to provide information on 
components related to correct rejections, false 
alarms, wrong hits, hits and misses. For example, 
the three maps consisting of T1: 1996; T2: 2009; 
and S2: 2009 (1996 and 2000) provided the 

reference map of the initial time. (T1) is LULC in 
1996, the reference map of T2 is LULC in 2009, 
and the simulation map of T2 (S2) is simulated 
LULC in 2009 with the input data for LULC in 
1996 and 2000.   

 

 

Figure 5. The probability values for the landform model based on the combination of TPI at the scale of 
small and large neighbourhoods, used to distinguish the classified landforms: A) Landform-based model 
classifications from the combination at the scale of small and large neighbourhoods; B) Display zoom view 
map of the Landform-based model for the test case area 

 



Land use simulation by the integration of Markov cellular automata and landform-based models 

 

Journal of Degraded and Mining Lands Management                                                                            1685 
 

 

Figure 6. The factors or parameters used to create the potential transition map: A) elevation; B) slope; C) 
distance from the nearest roads; D) distance from water bodies; E) distance from urban areas; F) potential 
transition map 
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Figure 7. The results of simulating and predicting LULC in 2009 based on the combination input data pairs 
for 1996, 2000 and 2003: A), B) and C): LULC in 2009 from the Markov-CA model without integration of 
the landform-based model; D), E) and F): LULC in 2009 from the integration of the Markov- CA and 
landform-based models. Class 1: built land; class 2: primary forest; class 3: secondary forest and mixed 
garden; class 4: plantation; class 5: wet agricultural land; class 6: dryland farming; class 7: water body 
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Figure 8. The results of simulating and predicting LULC in 2017 based on the combination input data pairs 
for 1996, 2000 and 2003: A), B) and C) LULC in 2017 from the Markov-CA model without integration of 
the landform-based model; D), E) and F) LULC in 2017 from the integration of the Markov-CA and 
landform-based models. Class 1: built land; class 2: primary forest; class 3: secondary forest and mixed 
garden; class 4: plantation; class 5: wet agricultural land; class 6: dryland farming; class 7: water body 
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Figure 9. The results of the comparison of the three-map calculations at multiple resolutions. 1) shows the 
relationship of the percentage of the study area, resolution (multiple of native pixel size) and components 
related to correct rejections, false alarms, wrong hits, hits and misses, while 2) shows the relationship of 
the FOM and resolution (multiple of native pixel size). A), B) and C) and G), H) and I) are the results of 
the comparison of the three-map calculations and FOM without the integration of the Markov-CA and 
landform-based models, while D), E) and F) and J), K) and L) are the results of the comparison of the three-
map calculations and FOM with the integrated Markov-CA and landform-based models. Resolution is one 
multiple of native pixel size equivalent to 30 m pixel size 
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Figure 10. The results of the comparison of the three-map calculations at multiple resolutions. 1) shows the 
relationship of the percentage of the study area, resolution (multiple of native pixel size) and components 
related to correct rejections, false alarms, wrong hits, hits and misses, while 2) shows the relationship of 
the FOM and resolution (multiple of native pixel size). A), B) and C) and G), H) and I) are the results of 
the comparison of three maps calculation and FOM without the integration from Markov-CA and landform-
based model, while D), E) and F) and J), K) and L) are the results of the comparison of the three-map 
calculations and FOM with the integrated Markov-CA and landform-based models. The resolution is one 
multiple of native pixel size equivalent to 30 m pixel size 

 



Land use simulation by the integration of Markov cellular automata and landform-based models 

 

Journal of Degraded and Mining Lands Management                                                                            1690 
 

 

 

Figure 11. The results of the comparison of the three-map calculations at multiple resolutions. 1) shows the 
relationship of the percentage of the study area, resolution (multiple of native pixel size) and components 
related to correct rejections, false alarms, wrong hits, hits and misses, while 2) shows the relationship of 
the FOM and resolution (multiple of native pixel size). A), B) and C) and G), H) and I) are the results of 
the comparison of the three-map calculations and FOM without integration form of the Markov-CA and 
landform-based models, while D), E) and F) and J), K) and L) are the results of the comparison of the three-
map calculations and FOM with the integrated Markov-CA and landform-based models. The resolution is 
one multiple of native pixel size equivalent to 30 m pixel size 
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Discussion  

Performance in improving the accuracy and 
reliability of LULC simulations 

The phenomenon of LULC change in the upper 
Citarum watershed has received serious attention 
from the government of Indonesia and is one of the 
country’s watersheds that has received attention 
and priority at a national scale. Previous research 
into LULC changes in the study area has been 
carried out by Yulianto et al. (2018). The results of 
this present research indicate related LULC 
changes that describe past and present conditions 
and provide predictions for the future. The effort to 
improve the accuracy and reliability of simulated 
LULC is the main objective of this research. The 
results of this study can be used to improve the 
accuracy and reliability of the simulated LULC 
model to support several previous studies. Thus, 
the approach integrating the Markov-CA and 
landform-based models is demonstrated in this 
study to achieve the research objectives.  

There are two components of agreement and 
three components of disagreement based on the 
three-map comparison approach. Correct rejections 
and hits are the components that indicate 
agreement, while misses, wrong hits and false 
alarms indicate disagreement. Meanwhile, misses, 
hits and wrong hits are the components which 
indicate observed change, while hits, wrong hits 
and false alarms indicate simulated change 
(Pontius and Millones, 2011; Pontius et al., 2008; 
2011; 2018).   

Pairs of LULC data for 1996, 2000 and 2003 
derived from remote sensing data used in the study 
conducted by Yulianto et al. (2018) were input to 
simulate and predict LULC in 2009 and 2017. 
Meanwhile, LULC in 2009 and 2017 was used as 
the reference base for evaluating the accuracy and 
reliability of the LULC model developed in this 
study. Performance measurement in terms of 
improved LULC simulation accuracy and 
reliability can be carried out using the three-map 
calculation comparison approach at multiple 
resolutions, as presented in Figures 9, 10 and 11. 
Meanwhile, Figure 12 and Table 5 show the 
comparison and differences between the example 
of interpretation results from the calculations of the 
three-map comparison approach for the 30 m pixel 
size resolution before and after the Markov-CA and 
landform-based models were integrated. 

In general, the information presented in 
Figures 9, 10 and 11 indicates that integration of 
the Markov-CA and landform-based models 
increased correct rejection as a component of 
agreement and reduced wrong hits and false alarms 
as components of disagreement for the percentage 

of the study area at each resolution (multiple of 
native pixel size). Hits as a component of 
agreement change simulated correctly also show an 
increase, even though nine of the 18 pairs of three-
map comparisons show a decline. Meanwhile, 
misses as a component of disagreement simulated 
as persistence also show an increase, although six 
of the 18 pairs of data show a decline. Meanwhile, 
based on the overall three-map comparison 
analysis, it can be shown that there is an increase in 
FOM values after the Markov-CA and landform-
based models were integrated, although six of the 
18 pairs of data indicate a decrease in FOM values.  

The interpretation of ID A-1 (T1: 1996; T2: 
2009; S2: 2009 (1996 and 2000)) (Figure 12 and 
Table 5), indicates that Markov-CA and landform-
based model integration increased the agreement 
components (correct rejections and hits ), at 7.4% 
and 2%, respectively. Meanwhile, it also reduced 
disagreement components (misses, wrong hits and 
false alarms), at 1.6%, 0.5% and 7.3%, 
respectively; thus, the increase in FOM is 10.1%. It 
can be shown that the results of calculations on the 
18 pairs of three-map comparisons have an 
increased value of FOM for 12 pairs of data after 
the Markov-CA and landform-based models were 
integrated, while six data pairs had decreased FOM 
values. The integration of the Markov-CA and 
landform-based models in several combinations 
and data pairs increased the FOM values for LULC 
simulations for 2009 from 3.1% to 10.1% and for 
LULC simulations for 2017 from 3.1% to 10.3%.  

Limitations and potential application 

In this study, LULC simulation was performed 
using the Markov-CA approach integrated with a 
landform-based model. Improvement of the 
accuracy and reliability of simulated LULC can be 
shown to have been achieved from the comparison 
of models before and after integration between the 
Markov-CA and landform-based models. Other 
potential applications in several LULC modelling 
technical approaches can be investigated in future 
research using not only Markov-CA, but also 
others approaches, such as the spatial logistic 
regression model (Tayyebi et al., 2010), the 
econometric-based land-use model (Plantinga and 
Lewis, 2014), the dynamic simulation model 
(Stéphenne and Lambin, 2001), linear 
programming and GIS (Chuvieco, 1993) and 
others. The landform-based model applied is 
limited in this study to the TPI model as proposed 
by Guisan et al. (1999), Weiss (2000), Wilson and 
Gallant (2000). Thus, the integration of other 
landform-based models, such as terrain surface 
classification as proposed by Iwahashi and Pike 
(2007), could be applied in future research. The 
spatial resolution of the data used in this study is 
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30 m based on input (Landsat and SRTM30 DEM 
imagery) which can produce information at a map 
scale of 1:25,000 to 1:50,000. To produce more 
detailed information for map scales of 1:5,000 to 
1:10,000, future research should use high-
resolution image data such as SPOT 6/7 images, 
Pleiades, Worldview and others. In addition, the 
DEM data for obtaining detailed topographic 

information could be derived based on stereo data 
from SPOT 6/7 images, as carried out by Yulianto 
et al. (2016). Integration of the Markov-CA and 
landform-based models for LULC simulations was 
applied to a small (local) area in this study; thus, it 
is necessary to test this model for a wider location 
to determine the performance of the model 
approach proposed in this study. 

 

 

 

Figure 12. Example of interpretation results from the calculation of the three-map comparison approach at 
multiple resolutions (for the 30 m pixel size resolution) showing the relationship of the percentage of the 
study area for the 30 m pixel size resolution and components related to correct rejections, false alarms, 
wrong hits, hits, misses and FOM. There are 18 pairs of data used for the comparison of the three maps,  
for T1, T2 and S2. A) Results of the comparison of the three-map calculations and FOM without integration 
of the Markov-CA and landform-based models. B) Results of the comparison of the three-map calculations 
and FOM with integrated Markov-CA and landform-based models 
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Table 5.  The results of comparison and difference values of the component FOM (misses, hits, wrong 
hits, false alarms and correct rejections) for the 18 pairs of data used for LULC simulation and 
prediction for 2009 and 2017, before and after the Markov-CA and landform-based models were 
integrated (for 30 m pixel size resolution) 

ID Three-map comparison Comparison Values (%) 
  Misses Hits Wrong 

hits 
False 

alarms 
Correct 

rejections 
FOM 

A-1 T1: 1996. T2: 2009. S2: 
2009 (1996 & 2000) 

-1.60 2.00 -0.50 -7.30 7.40 10.10 

B-1 T1: 2000. T2: 2009. S2: 
2009 (1996 & 2000) 

5.50 -4.00 -1.30 -13.50 13.50 -3.40 

C-1 T1: 2003. T2: 2009. S2: 
2009 (1996 & 2000) 

1.80 -0.80 -1.00 -10.30 10.20 3.10 

D-1 T1: 1996. T2: 2009. S2: 
2009 (1996 & 2003) 

-1.40 2.10 -0.60 -8.80 4.50 9.50 

E-1 T1: 2000. T2: 2009. S2: 
2009 (1996 & 2003) 

0.70 -0.20 -0.60 -6.70 6.70 3.70 

F-1 T1: 2003. T2: 2009. S2: 
2009 (1996 & 2003)  

4.00 -2.80 -1.20 -9.40 9.10 -6.10 

G-1 T1: 1996. T2: 2009. S2: 
2009 (2000 & 2003) 

-1.00 1.30 -0.50 -4.00 4.00 10.00 

H-1 T1: 2000. T2: 2009. S2: 
2009 (2000 & 2003) 

-1.70 1.70 -0.20 36.20 3.50 9.60 

I-1 T1: 2003. T2: 2009. S2: 
2009 (2000 & 2003) 

3.70 -2.90 -1.00 -8.10 8.20 -7.20 

A-2 T1: 1996. T2: 2017. S2: 
2017 (1996 & 2000) 

-1.60 2.40 -1.00 -8.10 8.20 10.30 

B-2 T1: 2000. T2: 2017. S2: 
2017 (1996 & 2000) 

4.00 -2.60 -1.40 -13.10 13.00 -0.40 

C-2 T1: 2003. T2: 2017. S2: 
2017 (1996 & 2000) 

1.00 0.10 -1.00 -10.50 10.60 5.80 

D-2 T1: 1996. T2: 2017. S2: 
2017 (1996 & 2003) 

-1.30 1.90 -0.60 -6.10 6.00 8.20 

E-2 T1: 2000. T2: 2017. S2: 
2017 (1996 & 2003) 

1.70 -0.70 -1.10 -8.60 8.60 3.10 

F-2 T1: 2003. T2: 2017. S2: 
2017 (1996 & 2003) 

5.10 -3.30 -1.70 -11.30 11.40 -2.80 

G-2 T1: 1996. T2: 2017. S2: 
2017 (2000 & 2003) 

0.30 0.10 -0.40 -4.20 4.10 4.70 

H-2 T1: 2000. T2: 2017. S2: 
2017 (2000 & 2003) 

0.20 0.20 -0.30 -4.10 4.10 3.60 

I-2 T1: 2003. T2: 2017. S2: 
2017 (2000 & 2003) 

4.70 -3.60 -1.00 -7.90 7.90 -4.80 

 (+) = increased value; (-) = decreased value. Correct rejection and hits are the two components indicating an agreement. 
Misses, wrong hits and false alarms are the three components indicating a disagreement. Misses, hits and wrong hits 
are the three components indicating observed change. Hits, wrong hits and false alarms are the three components 
indicating simulated change 

 

Conclusion 

This paper has presented the results of a new 
approach for LULC simulations applied in the 
upper Citarum watershed, West Java Province, 
Indonesia. The integration of Markov-CA and 
landform-based models has been used to simulate 
LULC in the study area. In this model, the un-

transition probability map is based on the 
correlation between the landform-based model and 
the un-transition probability matrix used to 
simulate LULC. The model has been successfully 
applied by comparing LULC simulation results for 
the Markov-CA approach before and after being 
integrated with the landform-based model. The 
results of the comparison of three-map calculations 



Land use simulation by the integration of Markov cellular automata and landform-based models 

 

Journal of Degraded and Mining Lands Management                                                                            1694 
 

at multiple resolutions have shown that results are 
better after the integration of Markov-CA and 
landform-based models than before integration. 
This confirms an increase in the accuracy and 
reliability of the LULC simulation model 
produced. The limitations of this study are that the 
integration of the model as currently applied covers 
an area that is not wide, so the development of 
further research by applying this model to a wider 
research area can be considered. 
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