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Abstract: Human activity affects both natural resources and spatial land use, including its utilization as 
sand mining sites. Sand mines, as a pillar of building construction, have been over excavated in certain 
areas, which has impacted the environment. In this research, the purpose of this study was to determine a 
spatial allocation of the mining designation area that will not damage the groundwater flow. Therefore, it 
is imperative for understanding the depth of groundwater at the study site, understanding the direction of 
groundwater flow, and the impact of mining activities on groundwater based on the combination of 
geophysical and geological approaches to improve the current government policy. A geological-
geophysics approach, vertical electrical sounding (VES), was followed at 12 different locations 
surrounding the Kertek District, which has a general geological formation of igneous volcanic rock 
sediment. The result of the geophysical measurements (possibilities) indicates the presence of shallow, 
medium, and deep groundwater aquifers, which tended to follow the slope direction to the south. This 
may be due to the unsaturated soil conditions as the geoelectrical measurements were taken at the 
beginning of the rainy season. Finally, the goals of this research were to integrate resources with spatial 
characteristics to allow proper resources management. 
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Introduction 

Urban expansion occurs due to the increasing 
human population of metropolitan areas, which is 
a cause of high population density, especially in 
Indonesia. The increasing population size has 
resulted in the more intense climate-related and 
climate change hazards currently experienced by 
Indonesia. Based on a case-study in Indonesia, 
60% of the population live in coastal areas, 
therefore, such areas are affected by the 
development of urban areas and water resources 
(Handayani and Kumala, 2015; Taylor, 2015; 
Djalante and Tomalla, 2012; Kumar et al., 2016; 
Handayani et al., 2017). Dieng Regency is 

included in the mining allotment area in the 
spatial plan of Central Java Province, Sindoro-
Sumbing. Similarly, the derivation of the spatial 
plan of Wonosobo Regency (Figure 1) mentioned 
the existence of a gravel rock mining area in some 
areas of the district. In several places in Indonesia, 
there are some contradictions in policy 
implementations. In Wonosobo Regency, Public 
Document Policy No. 2/ 2011 section 30 
contradicts section 39, which discuss whether the 
area is a groundwater basin or mining area. Kertek 
District, our case-study, is both a groundwater 
conservation basin and a volcanic gravel mining 
area. Therefore, it is necessary to determine the 
depth and flow direction of groundwater aquifers 
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in the area to anticipate the harmful impacts of 
future mining activity and propose better spatial 

planning in this region (Wonosobo Regency 
Public Documents, 2011). 

 

 

Figure 1. Study Area in Wonosobo regency, Central Java, Indonesia 

 
The mining activity that occurs on the slopes of 
Mount Sindoro, located in Kertek District, is 
harmful to the environment, especially for 
groundwater conservation. Sand mining in Kertek 
District may affect the underground water 
resources, which could be demonstrated using the 
geophysical vertical electrical sounding (VES) 
approach. The geoelectric resistivity method is 
one of the most widely used methods of 
exploration, especially for groundwater 
exploration, because the resistivity of rocks is 
very sensitive to their water content. The basic 
concept of this method is very simple. The Earth 
can be considered as a resistor due to rapid 
advances in electrical technologies and the 
development of numerical solutions (Kearey and 
Brooks, 1991; Olayinka, 1991; Metwaly et al., 
2009; Ndlovu et al., 2009). Groundwater 
investigations were conducted to estimate the 
depth between the forming facies (such as gravel 
or sand) and the physical characteristics of 
groundwater, (such as porosity and permeability). 
The aim of this research was to identify and 
generate underground aquifer maps to establish 
zonation policies for areas that may be mined, 
mined under certain conditions, and should not be 
mined at all. The maps will provide various 
geological information, such as the locations of 
sedimentary beds, sub-surface structures, and 
other associated features (Steward, 1982; van 
Overmeeren, 1989; Telford et al., 1990; Dahlin et 

al., 1999; Nowroozi et al., 1999; Meju, 2005; 
Helaly, 2017).  
 Based on previous studies, understanding 
flow pathways is a key issue for groundwater 
protection and development planning, essentially 
the types of sedimentary and tectonic 
homogeneous aquifer rocks (Lawrence et al., 
2006; Rivett et al., 2011; Qin et al., 2013; Medici 
et al., 2016). Other studies have attempted to 
investigate contamination in aquifer areas, predict 
septic failure, or use geophysical prospecting for 
other purposes (Santos et al., 2006; Lee et al., 
2006; Donohue et al., 2015; Gottschalk et al., 
2017). Studies on local geology indicate that 
common silicate minerals were found throughout 
the study area. The distribution of groundwater 
facies is related to local geology, which may 
cause differences in the hydrochemical processes 
and lithologies of groundwater in the study area 
(Thin et al., 2018). To establish better policies, the 
government of Wonosobo Regency considers it 
necessary to conduct a geoelectric survey and 
subsurface identification. The other purpose of 
this study is to determine a spatial allocation of 
the mining designation area that will not damage 
the groundwater flow. Therefore, this research is 
imperative for understanding the depth of 
groundwater at the study site, understanding the 
direction of groundwater flow, and the impact of 
mining activities on groundwater. The result of 
the combined geophysical and geological 
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approaches may protect groundwater aquifers and 
improve the current government policy for the 
mining area in Kertek, Wonosobo.  

Geological Settings 

Geomorphology 

Wonosobo is located in the mountain range of 
Central Java within 98.468,38 ha, heading 
northwest-southeast along the Dieng-Sindoro and 
Sumbing Mountains. Wonosobo regency divide 
for 15 sub-districts with topographic elevation 
around 270~2250 asl. Banjarnegara, which is 
located on the eastern side of Wonosobo, is 
surrounded with more dense mountains along the 
east-west orientation. Dieng-Sindoro-Sumbing is 
the product of Holocene-Recent volcanic activity. 
The Quaternary volcanic arc was formed as a 
result of the orthogonal subduction of the Indo-
Australian plate beneath the Eurasia plate, which 
has been active since the Early Cenozoic period. 
The major structures elongate east-west, parallel 
to the strike of subduction, forming the E-W-
trending thrust faults of Kendeng-Barabis. Under 
this stress regime, major strike-slip faults that 
trend NE-SW and NW-SE were developed (van 

Bemmelen, 1949; Hamilton, 1979; Simanjuntak 
and Barber, 1996; Harijoko et al., 2016). The 
distance between active volcanoes is relatively 
close, similar to the nearby Merapi-Merbabu-
Telomoyo-Ungaran active volcano row, which is 
also oriented northwest-southeast. 

Stratigraphy of geology 

There are several rock formations, mostly 
volcanic formations, that can be classified as the 
older Jembangan formation, Sumbing formation 
and younger Sundoro formation (Figures 2 and 3) 
based on the geological map of Banjarnegara and 
Pekalongan by Condon et al. (1996). The 
Jembangan volcanic formation consists of 
andesite lava and clastic volcanic rock, especially 
the local andesite with hypersthene-augite, which 
contains hornblende and olivine basalt. This 
formation is deposited over the slopes slightly 
further from the eruption centre. The Sumbing 
formation is composed of olivine-augite-rich 
andesitic lava, flow breccia, pyroclastic breccia, 
and lahar. The younger Sundoro formation 
consists of hypersthene-augite andesite and 
olivine-augite basalt, flow breccia, pyroclastic 
breccia, and lahar. 

 

 

Figure 2. Hydrogeology and geology map of Wonosobo regency, Central Java, Indonesia (modified from 
Putranto et al., 2016) 
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Figure 3. Schlumberger array configuration 
(modified from Telford, 1976) 

 

Hydrogeology of Wonosobo 

Wonosobo is divided into three regions based on 
its potential groundwater aquifers, i.e., confined, 
semi-confined, and non-confined aquifers (Figure 
2), and is dominated by a confined aquifer system. 
This suggests that there is a high potential for 
water recharging areas in Wonosobo, which may 
be connected to another groundwater basin system 
in the proximity of the Sundara-Sumbing-Dieng 
volcanic deposits. The determination of 

groundwater conservation zones aims to classify 
the changes in the groundwater level and the 
environment caused by natural processes or 
human activities. There are two types of 
groundwater conservation zones, i.e., protection 
(inflow) and utilization zones (outflow). The 
utilization zones are determined based on the 
degree of damage to groundwater and 
environmental conditions (Putranto et al., 2016). 
The protection zones include groundwater 
recharge zones, natural springs, and groundwater 
outflow production wells. The mining activities 
are started since 2001 which is the sand-gravel 
mining in Indonesia is classified as C Class, 
whereas non-strategic or vital mining that the 
market is a non-direct global market without 
necessary mineral processing. The mining 
activities will impact a change of socio-economic 
culture in the local society surrounding the mine 
deposits (Nurdin, et al., 2000; Hakim 2015). 
Based on data presented in Tables 1 and 2, the 
mining activities in this sub-district impacted the 
groundwater debit since established in 2001. 

 

Table 1. Groundwater debit before and after mining activities in Kertek sub-district (Source PDAM 
Wonosobo; Water Resources Dept.) 

Year Sidandang 
Spring 
(L/s) 

Muncar 
Spring 
(L/s) 

Mlandi 
Spring 
(L/s) 

Total 
Production 

(L/s) 

Average 
Production 

(L/s) 

Description 

1991 29.24 62.82 23.12 115.18   
1992 29.18 63,28 22.77 115.23   
1993 28.92 64.55 21.82 115.29   
1994 23.97 64.69 21.74 115.40   
1995 28.17 68.35 18.96 115.48 105.89 Before Mining 
1996 29.11 65.01 21.49 115.61   
1997 29.35 62.24 25.70 117.29   
1998 29.26 62.78 24.30 116.34   
1999 29.30 62.54 24.51 116.35   
2000 29.28 62.61 24.81 116.70   
2001 29.24 62.82 25.71 117.77   
2002 29.51 66.32 20.74 116.57   
2003 30.73 70.00 18.50 119.23   
2004 29.99 43.48 36.83 110.30   
2005 30.80 42.08 28.56 101.44   
2006 26.48 42.09 26.58 95.15   
2007 26.47 41.45 26.09 94.01   
2008 26.11 41.40 25.89 93.40 98.6 Mining Activities 
2009 25.99 41.17 25.66 92.82   
2010 28.83 41.07 25.51 92.41   
2011 25.39 40.65 24.99 91.03   
2012 27.53 41.03 24.44 93.00   
2013 25.11 39.46 24.01 88.58   
2014 23.64 39.11 23.89 86.64   
2015 24.76 38.76 23.13 86.65   

L/s – Liter per second 
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Table 2. Spring debit in Kertek (Source PDAM Wonosobo; Water Resources Dept.) 

No Spring Name Before Mine (X1) 
(L/s) 

After Mine (X2) 
(L/s) 

d (X2-X1) 
(L/s) 

d2  

(L/s) 
1 Sidandang 29.08 27.18 1.9 3.61 
2 Muncar 63.90 46.06 17.84 318.2656 
3 Mlandi 22.92 25.37 2.45 6.0025 

 

Materials and Methods 

The concept applied as a geophysical approach to 
our case is based on the response of the Earth to 
electrical current. In VES, an electrical current is 
induced through current electrodes, and two other 
potential electrodes are used to measure the 
potential difference between them. The electrodes 
are spaced at a certain distance from each other 
(Ward, 1990; Telford et al., 1990; Burger, 1992). 
Current electrodes are placed with L distance, 
while potential electrodes are placed with the 
shorter a distance, and the measurement point is 
located in the middle using the Schlumberger 
Array with the spreading technique from the 
centre to the top target. For example, the 
measurement point is 300 m from current 
electrodes A to B, and the result data are 
generated as the logarithmic depth of 
approximately 60-100 meters, which is why this 
method is also referred to as vertical electrical 

sounding (Figure 3). The potential difference can 
provide information about the geological 
formation beneath the measurement point. The 
greatest eccentricity used is 1/3 of the ratio 
between the current (A-B) and potential electrodes 
(M-N) to obtain a better signal strength according 
to the comparison distances between current and 
potential electrodes. This VES method is 
particularly robust for exploring subsurface 
aquifers owing to the characteristics of water in 
geological formations, as it serves as a 
conductivity agent for transferring electrical 
current. A full explanation of this method can be 
found in Telford (1976).  
 The potential difference was measured using 
the VES method from 2015-2017 at the location 
shown in Figure 3 and Table 3. There were 12 
measurement points to represent the Kertek Dub-
district, and measurements were taken using OYO 
McOhm Mark 2.  

 

 

Figure 4. Research flowchart 
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Table 3. Location of VES measurement points in 
Kretek, Wonosobo Regency 

No Name of 
Point 

X (UTM 
m) 

Y (UTM 
m) 

1 PGREJO 387771 9187293 
2 CD4 388065 9187776 
3 CD03 388470 9187533 
4 11 390871 9187445 
5 CDM7 388208 9186117 
6 CD3 388990 9187170 
7 KPCD02 398766 9187494 
8 13 387159 9188731 
9 AB 386235 9187412 
10 10 386406 9186336 
11 3 388293 9188080 
12 4 390126 9188387 

 

 
The measurement points were selected based on 
our concern that gravel mining would affect the 
water recharge system in the basin underneath the 
area. In addition to geophysical measurement, we 
also took geological observations in the study area 
to elucidate the origin and direction of the 
sedimentary process. Using geological data, such 

as structure bearing and geological formation, 
VES data can be used as a basis to determine both 
the depth and flow direction of groundwater. A 
flowchart for this research is shown in Figure 4. 

Results and Discussion 

The subsurface lithology and groundwater 
aquifers were detected through processing data 
and interpreting the true resistivity value at each 
measurement point. In general, the lithology 
obtained from the VES results indicates the 
resistivity of sandstone and volcanic materials. 
Shallow aquifers were identified at depths of 
approximately 3 m with a thickness ranging from 
13 to 28 m. Mid aquifers were identified at 
approximately 20 m beneath the surface, with a 
thickness ranging from 22 to 24 meters. Deep 
aquifers were identified at a depth of 64 m. 
Lithocorrelation was conducted for several 
different lines of measured data, and the results 
are presented in Figures 5-10. Each measurement 
point was positioned according to its elevation in 
order to lithocorrelate the interpreted data, which 
also aids in determining the direction of 
groundwater flow. 

 

 

Figure 5. Correlation of groundwater aquifer between point 10-PGREJO-CD03 
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Figure 6. Correlation of groundwater aquifer between point CD04-CD3 

 

 

 

 

Figure 7. Correlation of groundwater aquifer between point AB-PGREJO-CD03-KPC02-11 
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Figure 8. Correlation of groundwater aquifer between point 3-4 

 

 

 

Figure 9. Correlation of groundwater aquifer between point KPCR2-4 
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Figure 10. Correlation of groundwater aquifer between point PGREJO-CD4-3 

 

 

 
Figure 11. Contour map of groundwater elevation (contour interval 10 m) 
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Figure 12. Contour map of shallow groundwater (contour interval 10 m) 

 

 
Figure 13. Contour map of depth aquifer and the direction the groundwater (contour interval 10 m) 

 
Shallow aquifers were detected at several 
measurement points. The crossline in Figure 7 
suggests that water formations beneath KPCR02 
and 011 were connected as a shallow aquifer 
extending eastwards. However, the 
lithocorrelation of points 3 and 4 (Figure 8) 

suggests that the aquifer extends westwards. 
Figure 9 shows that the shallow aquifer beneath 
KPCR2 and 4 extends southwards. Observations 
of the shallow aquifer reveal that the shallow 
aquifer is strongly influenced by formation 
distribution; in this case, sandstone formations 
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have different thicknesses at different points 
which influence the direction of groundwater 
flow. 
 A deep aquifer was observed at 10 
measurement points, located in the mid-western 
region of the measurement area. As shown in 
Figure 5, PGREJO and CD03 indicated that the 
deep aquifer is connected and extends southwest. 
The NW-SE lithocorrelation of CD04, CD03, and 
CD3 suggested that the deep aquifer extends 
southeast. Figure 7 shows the lithocorrelation of 
five measurement points and suggests that the 
deep aquifer is distributed evenly in the central 
part of the study area. Point 3 in Figure 8 indicates 
the existence of a deep aquifer in the northern 
region of the study area. Figure 10 shows the deep 
aquifer beneath PGREJO, CD4, and 3, and the 
lithocorrelation suggests that the groundwater it 
contains flows towards the south-southwest. In 
general, the deep aquifer is assumed to be well 
connected in the central and western regions of 
the study area and groundwater is estimated to 
flow southwards based on the observations from 
the lithocorrelation. 
 A mid-depth aquifer is observed beneath CD 
3 (Figure 6), which appears to be isolated and was 
not detected at other measurement points. This 
aquifer is estimated to be 40 m thick at CD3. It is 
difficult to correlate the mid-depth aquifer 
detected at CD3 with the nearby points, but the 
possibility remains. Other possible explanations 
as to why this aquifer is isolated are differences in 
lithology or an error during data processing. This 
aquifer could also connect the shallow and deep 
aquifers and serve as the bridge for groundwater 
in the shallow aquifer located in the eastern region 
of the study area to the aquifers (shallow and 
deep) in the southern region with a lower 
elevation. 
 Based on the interpretation of each 
measurement point and lithocorrelations, a 
groundwater flow direction map was built, and the 
results are presented in Figures 11-13. Figure 11 
shows the flow direction of the shallow aquifer at 
its elevation. In general, the flow travels 
southwards, but it is not present in the central part 
of the study area. The dominant sediments 
originated from Mount Sundoro; therefore, the 
geology of the Wonosobo Regency is controlled 
by volcanic activities from the Sundoro-Siung-
Dieng Mountain. Figure 11 shows the 
groundwater flow of the deep aquifer, which is 
distributed in the central-western part of the study 
area and generally travels southwards to the south, 
gravity force of sedimentary process from 
volcanism in Mount Sundoro. Figures 12 and 13 
also present the groundwater flow direction based 
on the cross-plot correlation of the measurement 

point. The groundwater protection zones of the 
study area include recharge areas and the spring 
protection zone. The recharge zone is identified 
by considering topography, drainage pattern, and 
springs, and is located in northern to eastern 
Wonosobo Groundwater Basin area, including the 
Kejajar, Garung, Kertek, Kalikajar, Sapuran, and 
Kepil Sub-districts, at an altitude above 1100-
3050 m. The spring protection zone should be 
created within a radius of 200 m from the location 
of destructive activities (human activities), such as 
drilling, excavations, and other activities that may 
interfere with the presence of these springs 
(Putranto et al., 2016). 
 Generally, the aquifer flow travels 
southward, but that in the eastern region flows to 
the west. A shallow aquifer in the eastern region 
also flows southwards. The groundwater basins in 
Kertek, Wonosobo Regency, were identified as 
shallow and deep aquifers (mid-depth aquifers 
were also found in some regions) according to the 
cross-correlation model of the groundwater 
aquifer (Figures 5-10). The layering system of the 
groundwater basin found in the study area is 
common in Indonesia, especially within the 
vicinity of active volcanic sedimentary rocks, 
such as Yogyakarta City (Hendrayana, 2013). 
Other regulations in Indonesia state that open-pit 
mining, including gravel and limestone for 
housing construction, should consider and 
establish a maximum depth that reaches the 
groundwater level (there is no explanation of such 
a depth or the aquifer depth). Mining and special 
mining permit holders must also continue taking 
sustainable actions and maintain the carrying 
capacity of water resources under certain laws and 
regulations, data on the Tables 1 and 2 show the 
decreasing groundwater resources before and after 
mining activity in this sub-district (Law of the 
Republic of Indonesia No.4/ 2009; Ministry of 
Energy and Mineral Resources Regulation No. 34/ 
2017; Ministry of Energy and Mineral Resources 
Regulation No. 555.K/26/M.PE/1995). 
 Understanding the relative importance of 
various inputs to a given surface body is crucial 
for proper management (Winter, 1998; O’Driscoll 
and Parizek, 2002). Pedrera et al. (2016) 
conducted a study on the preservation of 
groundwater aquifers using controlled-source 
audio magnetotellurics (CSAMT), time-domain 
electromagnetic sounding (TDEM), and gravity 
prospecting for evaluating the hydrodynamic 
impact of intensive water pumping from 
limestone aquifers. The geophysical methods to 
constrain the geometry of carbonate aquifers 
provide insights into the implications of proper 
spatial groundwater and land management. In 
groundwater resources management, efforts must 
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be made to investigate the susceptibility of the 
delineated aquifers to pollution; therefore, these 
methods will assist in mitigating water 
contamination threats against human health and 
the environment (Oni et al., 2017). Geological and 
geophysical approaches to proper surface 
management are required to understand impacts to 
other aspects of life, such as underground water 
aquifers. The isotope ratio of δD (deuterium) in 
the water sample collected from Wonosobo is 
calculated as an elevation function by entering the 
value of δ18O (oxygen). Therefore, the isotopic 
composition of the rainwater line contains the 
information of the elevation at which the 
rainwater fell. If the isotopic composition of a 
water sample taken from the springs and 
coordinated wells is consistent with this, then the 
water samples are likely derived from meteoric 
water. The meteoric water source in this area is 
oxygen-rich, and the resulting groundwater is 
potent at an elevation of approximately 1395-
1509 m above sea level (Drever, 1988; Wijatna et 
al., 2018). Groundwater conservation zones were 
studied to determine the degree of changes in 
conditions and environmental groundwater caused 
by natural processes and/or human activities. The 
implementation of a conservation zone aids in 
protecting groundwater from misuse and spatial 
planning. The determination of conservation areas 
is the responsibility of the government in 
accordance with PP. 43/2008 article 24 which 
states that groundwater resources are to serve 
societal prosperity and that direct supervision 
from the government is provided at the district, 
regency, province, or even national levels under 
the Ministry of Public Works (Public Document 
of Water Resources, 2008; Hendrayana, 2015). 
Groundwater conservation effort should be made 
to optimize the reservoir area in the groundwater 
basin system, restore, and protect groundwater 
from contamination by human activities, and 
improve the long-term environmental 
sustainability. This research indicates that there is 
a situation where resource deposits may be 
located in the same place as the groundwater 
basin system and may also conflict with the future 
spatial residential plan of this regency. The 
government should carefully establish legislation 
to address this. 

Conclusion 

In this study, the regulation of the groundwater 
recharge zone in Kertek, Wonosobo, was 
evaluated. The geoelectric survey on the 
southwestern slope of Mount Sindoro in the 
Kertek District indicates the presence of 
"shallow", "mid-depth", and "deep" groundwater 

aquifers, which incline along the slope direction 
to the south. However, the water in the deep 
aquifer in the east flows to the west. Shallow 
aquifers, which were detected by geoelectric 
surveys are not completely connected, particularly 
in the Pagerrejo area. This could be due to the 
unsaturated soil conditions, as geoelectric 
measurements were conducted at the beginning of 
the rainy season. The results of this study can be 
used to improve our understanding of geophysical 
approaches in hydrogeology to conduct more 
comprehensive research and improve water 
resources management. At the end of this 
research, we suggested that the Kertek Sub-
district recharge area may conflict with the sand-
gravel mine in the same location, according to the 
sub-surface modelling. 
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