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 Nowadays, halting greenhouse gasses (GHG) emission is the world's major 
concern to mitigate global climate change. In oil palm cultivated tropical 
peatland, GHG emission is primarily constituted of CO2 flux emitted from 
aerobic heterotrophic respiration (Rh), the natural degradation process of 
organic material in an oxidative environment. By coupling descriptive and 
predictive statistical approaches, this study attempted to gain an in-depth 
understanding of the effects of zeolite rates and incubation time on CO2 
emission that came from aerobic Rh in peat, as well as their decomposition 
process. This study found that zeolite amelioration up to 30% of the peat at 
field capacity and starting from the first month of observation (month-1) 
significantly restricted peat Rh, denoted by a reduced amount of observed CO2 
flux (0.021 and 0.019-0.012 mg m-2 sec-1, respectively). Both factors and 
several soil variables exhibited some non-linear relationships with Rh at 
different magnitudes and importance, showing the limitation of the traditional 
linear-based approach to interpreting their complex interrelationships, as well 
as predicting CO2 flux. This study highlights the vital role of a polynomial 
(GAM) and artificial intelligence (Cubist and GBM) -based pedotransfer 
models in improving our understanding regarding the dynamic of the peat 
decomposition process as affected by zeolite amendment. 
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Introduction 

Indonesian peatland contributes a considerable extent 
to the world's tropical peat and sequesters carbon at a 
huge volume (Kurnianto et al., 2014; Miettinen et al., 
2017), as well as located closely to anthropogenic 

disturbance sources (Dohong et al., 2017; Page et al., 
2022). Furthermore, greenhouse gas (GHG) emitted 
from Indonesian peatland is recently gained worldwide 
attention as a consequence of extensive landscape 
transformation from the natural peat-swamp forest into 
other land uses (Miettinen et al., 2017; Wijedasa et al., 
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2017; Leifeld et al., 2019; Dadap et al., 2021). The 
changes in land use types, particularly for plantations, 
require drainage management to prevent prolonged 
waterlogging conditions, thereby resulting the 
deepening of groundwater levels (GWL). Oxic 
condition that occurs at the peat surface not only 
provides near-ideal conditions for growing oil palm 
seedlings or saplings but also generates a favorable 
environment for microorganism activity. This act, 
hence, will enhance the decomposition of peat material 
and increase GHG emissions (Cooper et al., 2019; 
Aditya Prananto et al., 2020; Xu et al., 2021). 
Consequently, mitigating peat decomposition in 
cultivated Indonesian peatland areas is urged to be 
done. 
 Managing aerobic heterotrophic respiration (Rh) 
as low as possible is pivotal in oil palm cultivated 
peatland since GHG emission (in this case: total soil 
respiration/Rt) is remarkably comprised of Rh, 
particularly at microsites that are far from the oil palm 
tree (Ishikura et al., 2018; Manning et al., 2019; 
Pulunggono et al., 2022a). Rh primarily consists of 
aerobic heterotrophic microorganism activity at the 
oxic zone above GWL, which requires oxygen to 
decompose organic materials and emits CO2 as their 
respiration result (Widiastuti et al., 2021). Peat 
material is commonly known as the primary source of 
decomposable organic matter; whereas lesser 
contributors of aerobic Rh also have been investigated, 
such as pruned fronds (Wakhid and Hirano, 2021), 
understory litters (Pulunggono et al., 2022a), or dead 
root fragments (Pulunggono et al., 2022b). Moreover, 
another Rh fraction comes from an anoxic zone at a 
higher depth below GWL and unconnected pores, 
having a condition suitable for anaerobic 
decomposition, thus outgassing a negligible amount of 
CH4 at a slower rate (Cooper et al., 2020). 
Furthermore, another GHG source is autotrophic 
respiration (Ra) which originates from root-related 
respiration (Melling et al., 2013; Dariah et al., 2014; 
Sabiham et al., 2014). The contribution of Ra might be 
low, offset by CO2 uptake during the oil palm 
photosynthesis process (Ishikura et al., 2018).  
 Previous reports quantifying declined Rh as 
affected by peat surface waterlogging, either by a 
natural process (Desmukh et al., 2021) or artificially 
wetted (Ishikura et al., 2018; Manning et al., 2019). 
Other researchers suggested lowering soil temperature 
by increasing shading components through matured oil 
palm leaves (Jauhainen et al., 2014; Manning et a., 
2019) and understory cover crops (Pulunggono et al., 
2022a) and frond piles (Manning et al., 2019). 
Moreover, there is an indication that zeolite 
amelioration can also halt GHG emission and/or Rh of 
tropical peat materials, as reviewed by Santi et al. 
(2021). Zeolite possesses a high capacity to adsorb and 
hold a considerable amount of water and soil nutrients 
(Cataldo et al., 2021), store CO2 and NH3 (Megias-
Sayago et al., 2019; Valencia et al., 2019), and reduce 

soil temperature oscillation (Badora, 2016). On the 
other hand, zeolite application in oil palm plantations 
was promising, owing to advanced zeolite synthesis 
from oil palm disposal (Khanday et al., 2016; Khanday 
et al., 2017; Kongnoo et al., 2017). Publications 
concerning zeolite amendment to improve soil health 
are abundant in mineral soil studies (Mondal et al., 
2021; Szerement et al., 2021). Emerging studies 
regarding its application in tropical peat are also 
reported (Ahmed et al., 2015; Lim Kim Choo et al., 
2020; Krishnan et al., 2021). Unfortunately, combating 
GHG emitted from Rh in oil palm cultivated tropical 
peat using zeolite are extremely scarce topic to be 
found.  
 There are large numbers of published reports on 
soil science domains, researching and reviewing the 
effect of zeolite amendment on soil health in 
particular, as well as on the environment and 
agriculture studies in general (Badora, 2016; Cataldo 
et al., 2021; Mondal et al., 2021; Morante-Carballo et 
al., 2021). As mentioned previously, its application in 
tropical peatland is considerably limited. Most of them 
are analyzed and interpreted with a traditional 
descriptive approach. Currently, there is developing 
interest emerging in agricultural and environmental 
studies regarding the usage of predictive modelling, 
especially artificial intelligence/AI (Liakos et al., 
2018; Ye et al., 2020; Benos et al., 2021). Advanced 
predictive modelling based on AI is considered 
beneficial for interpreting soil data since they are not 
restricted by a particular set of rules and limitations. 
AI algorithm will automatically learn the pattern of the 
data, allowing the user to interpret the modelling 
results with an established theoretical framework or 
reveal new findings (Rossiter, 2018; Padarian et al., 
2020). Compared to the linear-based model, the AI-
based models can flexibly capture both linear and non-
linear relationships among the factors and soil 
variables with considerable accuracy, as shown in 
findings of the related fields (Bond-Llamberty, 2018; 
Holl et al., 2020; Adjuik and Davis, 2022; Pulunggono 
et al., 2022b).  
 Therefore, this study aimed to elucidate the 
effects of zeolite rates and incubation time on CO2 
emission that came from peat Rh, as well as gain 
insight into concerning peat decomposition process by 
pairing descriptive and predictive statistical 
approaches.  
 Based on that, this study hypothesized that: (1) 
zeolite amendment in terms of its content and 
incubation time could restrict heterotrophic respiration 
(Rh), as shown by decreasing trend of CO2 emission, 
(2) the relationships between factors and soil variables 
used in this study with CO2 emission are non-linear, 
and (3) AI-based pedotransfer models were beneficial 
to support common linear-based models and 
traditional descriptive approach, with respect to their 
accuracy and interpretability.  
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Materials and Methods 

Research site, peat sampling, and incubation 

The peat material (0-20 cm) was collected compositely 
under oil palm cultivated peatland in Buatan Village, 
Koto Gasib, Siak Regency, Riau Province (0o 44' 44" 
N and 101o 46' 22' E), March 2021. The area undergoes 
2,045 mm precipitation (May 2020 to April 2021) with 
an equatorial climate pattern and unclear precipitation 
difference between months (Pulunggono et al., 2022a). 
From a physiographic perspective, the study site is 
located on the back swamp of the Siak and Gasip 
rivers. The peatland surrounding the study site had a 
hemic-sapric maturity stage around five meters thick 
(Pulunggono et al., 2019). Their physical and chemical 
properties are summarized in Table 1.  
 
Table 1. Peat properties used in this study. 

Type of analysis Value Status* 
pH H2O -peat 3.21 Very acidic 
pH H2O -zeolite 8.91 - 
Organic C (%) 56.83 Very high 
Peat water content (%) 432.65 - 
Ash content (%) 2.30 Low 

Note: status referred to the technical guidelines of soil 
chemical analysis (Eviati and Sulaeman, 2009). 
 
Immediately after being sampled, the peat material 
was packed and transported to the Soil Chemistry and 
Fertility Laboratory, Department of Soil Science and 
Land Resources, Faculty of Agriculture, IPB 
University. An approximately 2 kg of peat material 
was then incubated with zeolite inside a jar (d =15 cm; 
h = 18 cm) for three months. The zeolite rates varied 
from 0, 10, 20, 30, 40 to 50% with five replications, 
calculated based on peat weight at the field capacity, 
resulting in 30 experimental units in total. 

Laboratory analyses and CO2 flux measurement 

Laboratory analysis was conducted during the initial 
and every month of the incubation period. Actual peat 
acidity/APA was determined using pH H2O (1:1), peat 
water content/PWC was determined using gravimetric 
methods, and total peat acidity/TPA using BaCl2-TEA 
pH 8.2, and organic-C content was determined using 
lost on ignition/LOI method.  

The CO2 flux from each experimental unit was 
measured monthly using calibrated IRGA (Infrared 
Gas Analyzer) LI-830 with a closed-chamber method. 
A chamber (d =15 cm; h =18 cm) was installed to load 
gasses from the incubated peat inside the jar. The gas 
then flowed to the IRGA, which measured the gas 
every second for 2 minutes. The temperature in the 
chamber (T) was measured concurrently with the CO2 
measurement, followed by the measurement of the 
chamber height from the chamber lid to the surface of 
the peat material. The results were calculated using 
Madsen et al. (2009) equation: 

fc =
Ph

RT

dC

dt
 

Fc represents the flux value (mg m-2 sec-1), P is 
atmospheric pressure, h is the height from the chamber 
lid to the surface of the peat material, R is the gas 
constant (8.314 Pa m3 °K-1 mol-1), T is the temperature 

(°K), and 
ୢୡ

ୢ୲
 is the linear change in CO2 concentration.  

Descriptive statistical analyses: LME-REML and 
PCA 

Data collating, listing, and inspection were done using 
Microsoft Excel and Minitab 16. Prior to analysis, the 
data were inspected to omit missing values and 
outliers. A square root/sqrt transformation was applied 
to CO2 flux data to gain normalized distribution with 
respect to the Kolmogorov-Smirnov normality test. 

To achieve reasonable perspective concerning 
the effects of zeolite rates and incubation time, as well 
as other related peat parameters to CO2 flux, this study 
employed the linear mixed effect model/LME with 
restricted maximum likelihood/REML. At first, CO2 
flux was plotted as a response and the entire 
parameters (zeolite rates, incubation time, T, PWC, 
APA, and TPA) were fed entirely into the general 
linear model (GLM type III) coupled with backward 
stepwise elimination/BSE (95% confidence interval) 
to obtain their effect to CO2 flux variance. The 
elimination terms included the coefficient of 
determination (R2), Akaike information criterion/AIC, 
and Bayesian information criterion/BIC. The GLM-
BSE analysis resulted from the consideration of zeolite 
rates and incubation time as fixed factors, whereas the 
others were seemingly favourable as random factors. 
Hence, LME-REML was performed to test the 
hypotheses, resulting in comparable R2 and slightly 
higher performance of AIC and BIC terms than GLM-
BSE model. Moreover, APA, PWC, and TPA were 
excluded from the model due to confounding/aliasing 
with the error terms. Lastly, Tukey’s honestly 
significant difference/HSD test was chosen as post-hoc 
test to examine the grouping of the entire factors. All 
of the variance analyses were conducted using Minitab 
16. In order to increase the clarity, the boxplot based 
on original metrics of CO2 flux (mg m-2 sec-1) was 
generated using tidyverse in the R environment 
(Wickham, 2022), equipped with a significant letter 
that was acquired from Tukey’s HSD test. 

This study also utilized principal component 
analysis/PCA as a multivariate analysis to complement 
LME-REML. A standard PCA was employed using 
factomineR (Husson et al., 2020) and factoExtra 
(Kassambara and Mundt, 2020) packages in the R 
environment to extract principal components/PCs, 
representing most of the variation of the entire data. 
This study considered PCA methods to reveal 
underlying relationships among CO2 flux and the 
entire factors and parameters observed in this study 



H.B. Pulunggono et al. / Journal of Degraded and Mining Lands Management 10(1):3889-3904 (2022) 

  

Open Access                                                                                                                                                        3892 
 

since every PC contains certain parameters that 
contributed most to the dataset variances. Several 
groupings based on linear projection were also 
performed with respect to zeolite rate and incubation 
time. 

Predictive statistical analyses: pedotransfer models 
for CO2 flux prediction 

This study examined the performance of several 
pedotransfer models (summarized in Table 2) in 
predicting CO2 emission from peat materials incubated 
with zeolite. The entire pedotransfer models were 
developed under the R environment with the following 
general formula: 

CO2 flux ~ zeolite rate + incubation time + T + APA + PWC 
+ TPA 

Unlike the sqrt-transformed form in LME-REML and 
PCA analyses, CO2 flux was reversed back into its 
original value, allowing the model algorithm to learn 
the original relationships and pattern of the data. 
Meanwhile, organic C was discarded from the 
equation owing to higher missing data. The entire data 
was scaled and centred using min-max normalization 
to prevent the domination of variables that contain 
higher magnitudes and preserve their pattern. 
Moreover, the original datasets were randomized and 
then split into training (70%) and testing (30%) data. 
Both the training and testing data were separated into 
predictor matrices and response vectors for convenient 
use in training and validating the models. Most of the 
pedotransfer models were firstly trained and tuned 
using a common ML aggregator caret package (Kuhn 
et al., 2020), except for GAM and SVM-based models. 

 

Table 2. Pedotransfer models used in this study. 

Name Abbreviation Family Package  Source  
Multiple linear regression MLR Linear  stat R core team (2022) 
Logistic-linear model LogGLM Logistic 

binomial 
stat, caret R core team, Kuhn et al. 

(2020) 
Multivariate adaptive 
regression spline 

MARS Polynomial  earth, caret Milborrow (2021), Kuhn 
et al. (2020) 

Generalized additive model GAM  mgcv, gam Wood (2021), Hastie 
(2022) 

Cubist Cubist Machine 
Learning 

Cubist, caret Kuhn et al. (2022), Kuhn 
et al. (2020) 

Tree regression TR  rpart, caret Therneau et al. (2022), 
Kuhn et al. (2020) 

Random forest RF  Random 
Forest, ranger, 
caret 

Liaw and Wiener (2018), 
Wright et al. (2021), Kuhn 
et al. (2020) 

Gradient boosting machine GBM  gbm, caret Greenwell et al. (2020), 
Kuhn et al. (2020) 

Support vector regression with 
linear basis kernel 

SVRl  e1071 Meyer et al. (2022) 

Support vector regression with 
polynomial basis kernel 

SVRp  e1071 Meyer et al. (2022) 

Support vector regression with 
radial basis kernel 

SVRr  e1071 Meyer et al. (2022) 

Support vector regression with 
sigmoid basis kernel 

SVRs  e1071 Meyer et al. (2022) 

 

The best performance model with particular 
hyperparameters setting that gained the lowest RMSE 
were selected using the combination of grid search and 
5-fold cross validation (k-fold cross validation/KFCV) 
with ten replication to avoid model overfitting. The 
ensemble tree models (e.g., RF and GBM) were also 
trained separately using grid search and cross 
validation in ranger (Wright et al., 2021) and gbm 
(Greenwell et al., 2020) packages, respectively, 
exploiting their out-of-bag/OOB fraction. Similar to 
RF and GBM, grid search combined with 10-fold cross 
validation was also applied to separately train TR 

model using rpart package (Therneau et al., 2022). To 
obtain the maximum model performance, the grid 
search-based tuning was repeated three to four times, 
each turn updated and narrowing the previous search 
ranges. The results of TR, RF, and GBM training using 
separated packages were then compared to caret‘s 
results thereby, the best model was selected by the 
lowest RMSE. GAM was left without much tuning 
since limited adjustment information in mgcv package 
and a sufficient degree of freedom acquired at k = 4 for 
each predictor and REML as smoothing parameter 
estimation. The entire SVM-based model was tuned 
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using grid search utilizing tune.svm function in e1071 
package (Meyer et al., 2021).  

Model evaluation was performed consisting of 
several performance metrics, i.e., root means square 
error/RMSE, mean absolute error/MAE, Bias, and 
coefficient of determination/R2. Model explainability 
or interpretability was approached divergently 
concerning their differences in complexity. To get 
uniform interpretability technique that works for all 
models, this study used several approaches, utilizing 
both local and global models agnostic methods that 
consisted of partial dependence/PD, individual 
conditional expectation/ICE, and permutation feature 
importance/PFI (iml package; Molnar and Schratz, 
2022).  

Results  

The relationships between peat heterotrophic 
respiration with the entire factors and variables 

According to LME-REML analysis in Figure 1.1, 
zeolite amendment, as determined by its rate, caused 
minimum and notably different CO2 flux emitted from 
maximum zeolite application (50% lower than control; 
0.012 mg m-2 sec-1). Amending zeolite up to 30 and 
40% significantly decreased CO2 flux by 1.2 and 1.4 
folds (0.021 and 0.014 mg m-2 sec-1, respectively) 

compared to control. Lower CO2 flux was also emitted 
from peat amended by a lower zeolite percentage (10 
to 20%; 0.025 and 0.023 mg m-2 sec-1, respectively); 
however, their emissions did not statistically different 
from the control.  

A significant effect of incubation time was also 
observed on CO2 emission, as shown in Figure 1.2. a 
significantly highest CO2 flux was emitted at the first 
observation (control; 0.037 mg m-2 sec-1). The first and 
two months of incubation remarkably inclined CO2 
flux by 1.4 and 1.5 folds (0.019 and 0.017 mg m-2 sec-

1, respectively) than control. A minimum CO2 flux (1.8 
folds than control; 0.012 mg m-2 sec-1) was 
pronouncedly emitted from the last month of 
incubation. 

Generally, CO2 fluxes had a negative correlation 
with T and APA (Figures 1.3 and 1.5). However, 
opposite relationships were recorded among CO2 
fluxes with PWC and TPA (Figures 1.4 and 1.6). A 
relatively flat trend was observed on CO2 flux from 
100 to 300% PWCs; furthermore, an inclined curve 
could be drawn from 300 to 500% PWCs. CO2 
emission seemingly had decreasing trend over the 
increase of both fixed factors, as shown in Figures 1.1 
and 1.2. However, non-linear relationships were 
diversely observed from both fixed (Figures 1.1 and 
1.2) and random factors (Figures 1.3, 1.4, 1.5, and 1.6). 

 

Figure 1. The effect of the entire factors and peat properties on peat heterotrophic emission. The white asterisk 
and black horizontal line inside the boxplot indicate mean and median values, respectively; the black dashed line 

indicates means from the entire CO2 flux data. 

(1.1) (1.2) 

(1.4) 

(1.6) 

(1.3) 
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The zeolite treatment seems to have polynomial-based 
relationships with CO2 flux. Meanwhile, the 
relationships between CO2 flux and incubation time 
could be fitted with a Weibull-based curve. More 
complex relationships, as shown by more scattered 
points, emerged among CO2 flux with T, PWC, APA, 
and TPA, possibly could be determined by Poisson or 
quasiPoisson-based curve.  

The effect of zeolite content and incubation time 
on T, PWC and APA were presented in Figure 2. The 
entire rate of zeolite application significantly increased 
PWC and APA compared to control; meanwhile 
similar effect on T was recorded on 20% of peat dry 
weight. PWC on 10% and 20% of zeolite applications 
were markedly different from control, whereas 
inconsiderably differences with both rates were 

observed at higher rates. Amending 10% of peat dry 
weight or higher chiefly affected APA, particularly at 
30 and 50% zeolite application.  

T, PWC, and APA were affected significantly by 
incubation time. Moreover, different effects were 
obtained, as shown by the up and down pattern for T 
and decreasing trends for PWC and APA. T was 
recorded inclined twice in the second and last months 
of observation. Both peaks exhibited insignificant 
differences from each other and notable differences 
with the first observation (month-0). PWC was 
remarkably different in every month of observation. 
APA’ magnitudes remained less significant during the 
first three months of observation. Subsequently, a 
notable difference from the first observation was 
attributed to the last observation. 

  

 

Figure 2. The effect of zeolite content and incubation time to T, PWC, and APA. The white asterisk and black 
horizontal line inside the boxplot indicate mean and median values, respectively; the black dotted line indicates 

means from T, PWC, and APA, respectively. 
  
Descriptive multivariate analysis (in this study: PCA; 
Figure 3.1) showed five PCs that contributed to the 
variance of the entire dataset. The figure also depicted 
the first three PCs (PC1, PC2, and PC3) that mostly 
accounted for the dataset variance (46.7, 30.1, and 
13.6%; respectively) with the eigenvalue more than 1, 
accumulating 90.5% of the total variance. PC1 was 
significantly loaded with the peat chemical properties, 
especially TPA and APA (Figure 3.2.1). Moreover, 
PWC and CO2 flux remarkably correlated with PC2 

(Figure 3.2.2). In Figure 3.2.3, PC3 only accounted T 
as its significant contributor. 

After both significant first two PCs were plotted 
in the ordination diagram, gradual shifts were observed 
in the grouping of the observation points, either in 
zeolite content (Figure 2.3.1) or incubation time 
(Figure 2.3.2). These were the indication of both 
factors’ significance in regulating the variances of the 
dataset, including CO2 emission variance. Several 
classes were significantly different, denoted by their 
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less overlapped points (i.e., 0-all, 10-30 and 40, 30-
50% zeolite content; 0-all, 1-3, and 2-3 months of 
observation; Figures 2.3.1 and 2.3.2). However, visual 
observation of both factors denoted overlapping 
observation points, indicating that some classes were 
not significantly different. In Figure 2.3.1, amending 
20-30%, 30-40%, and 40-50% zeolites seemingly 

exhibited overlapping points. These results were 
partially different with grouping based on LME-
REML analysis for CO2 flux (Figure 1.1), particularly 
for 30-40% zeolite application. Supporting the 
findings of LME-REML analysis, 1 and 2 months of 
observation were also visually overlapped (Figure 
2.3.2). 

 
 

 

 
Figure 3. Princical component analysis/PCA of peat heterotrophic emission with the entire factors and variables, 

exhibited the percentage of explained variances (2.1), variable contribution of the first three PCs (2.2.1, 2.2.2, 
and 2.2.3), and biplots of loading and observation plots, grouped by zeolite content (2.3.1) and incubation time 
(2.3.2). Note that the red dotted lines in Figures 2.2.1, 2.2.2, and 2.2.3 indicated the significant contribution of 

each variable loaded by their respective PC. 
 

Pedotransfer modelling comparison of peat 
heterotrophic respiration as affected by zeolite 
amendment and incubation time  

The entire pedotransfer models' performance was 
assessed using four evaluation metrics, shown in 
Figures 4 and 5. Generally, polynomial-based models 
(i.e., GAM and MARS) acquired the best 
performances in predicting CO2 flux, as indicated by 
their lowest RMSE (0.136 and 0.140, respectively) and 
MAE (0.101 and 0.111, respectively), as well as 
moderate Bias (0.34 and 0.35, respectively). ML-based 
models had also comparable RMSE and MAE, 
particularly for Cubist (0.140 and 0.111), GBM (0.141 

and 0.111), and SVRr (0.144 and 0.106) models. 
Interestingly, several widely popular ML-based 
models gained the worst performances in this study, 
for instance, TR and RF, which possessed higher 
RMSE and MAE than simpler models (i.e., MLR and 
LogGLM). 

According to Figure 4, the entire pedotransfer 
model showed positive values based on Bias. These 
indicated that they underestimated CO2 flux prediction 
compared to the actual CO2 flux. Interestingly, the 
high performer models (i.e., GAM, MARS, Cubist, 
GBM) based on both previous evaluation metrics 
failed to attain the lowest Bias. However, they reached 
a slightly lower value, about 60 to 20 percents from the 
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minimum Bias gained by LogGLM. Furthermore, 
based on R2 perspective in Figure 5, the entire 
pedotransfer models used in this study exhibited 
comparable results with strong confidence intervals, 
ranging from 0.55 to 0.69 (p<0.001). Both polynomial 

(GAM) and ML (SVRr, Cubist, and GBM) -based 
models achieved best agreements (R2 = 0.68-0.69). 
Except for TR, the entire polynomial and ML-based 
models attained higher R2 (R2 ≥0.64) compared to 
MLR and LogGLM (R2 = 0.62). 

 

Figure 4. RMSE, MAE, and Bias of several pedotransfer models used in this study. 
 

 
Figure 5. Model agreement based on the coefficient of determination (R2) of several pedotransfer models used in 

this study. Note that the entire predicted and observed value of CO2 fluxes were transformed to min-max 
normalization. 
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PDP and ICE methods employed in this study inferred 
both linear and non-linear relationships of each factor 
and soil variables' marginal effect on the predicted CO2 
flux (predicted.y in Figure 6) possessed by “the best 
performers” pedotransfer models compared to MLR. 
Predicted CO2 flux had general decreasing trends over 
both factors (zeolite rate and incubation time). Soil 
temperature and peat water content had similar curve 
patterns to previous factors, except for GBM, which 
showed opposite slope directions. Other soil variables 
exhibited diverse and contrasting patterns over 
predicted CO2 fluxes. The curve pattern of zeolite rate 
was similar all across the best performer pedotransfer 
models, except for GBM. GAM and GBM denoted a 
similar pattern, exhibiting a sharp dip of predicted CO2 
fluxes during early observation, therefore, continued 

by decreasing trends with more moderated slopes at 
the middle and the end of observations. However, 
linear patterns that were relatively similar to MLR 
were shown by other ML-based pedotransfer models 
that also acquired higher R2 and RMSE, for instance, 
Cubist and SVRr.  

Interestingly, GAM as the best pedotransfer 
model in this study, shared closely a similar PDP 
pattern with MLR, particularly at zeolite content, soil 
temperature, and total peat acidity. Differently from 
the ordinary least square of MLR, restricted maximum 
likelihood/REML as smoothing parameter in 
polynomial-based algorithm of GAM successfully 
captured non-linear and opposite linear relationships 
of predicted CO2 fluxes to incubation time and actual 
peat acidity, respectively.  

 

 

Figure 6. Partial dependence/PD (yellow lines) and individual conditional expectation/ICE (black lines) curves 
comparison of some of the best performer pedotransfer models used in this study compared to MLR model. Note 

that the data distribution is depicted by a rug in the x axis. T, PWC, APA, and TPA represent soil/peat 
temperature, peat water content, actual peat acidity, and total peat acidity, respectively. All of the predictors and 

predicted values were min-max-transformed. 
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Feature importance based on MSE loss in Figure 7 
exhibited that incubation time was the most important 
covariate for predicting CO2 flux, regardless of the 
model. Zeolite content and TPA were the second 
important covariates, respectively, accounting for nine 
and three of the entire pedotransfer models used in this 

study. T was a moderately important covariate, owing 
to its middle position. Moreover, PWC and APA were 
the most unimportant covariates, as shown by their 
least position at utmost pedotransfer models in Figure 
7.  

 

 
Figure 7. Permutation feature importance/PFI plots based on MSE loss for the entire pedotransfer models used in 

this study. 

Discussion 

This study demonstrated the importance of zeolite 
incorporation to halt heterotrophic respiration (Rh) in 
tropical peat in the form of its rate and incubation time, 
supported by coupling descriptive statistical analyses 
(LME-REML and PCA; Figure 1) and advanced 
predictive-based pedotransfer modelling (Figure 7) 
approaches. By tailoring this combination approach, 
soil science and agricultural researchers are able to 
extract valuable information and gain understanding 
from various perspectives, as also pronounced by other 
researchers from diverse disciplines, such as material 
science (Bock et al., 2019), engineering (Patrick et al., 
2019), as well as health and medical science (Basu et 
al., 2020; Ma, 2020). This study presents an initial 
stepping stone from the traditional approach into the 
multidimensional realm of analytics in soil science and 
agricultural studies.  

Zeolite has a high water holding capacity/WHC, 
which can efficiently retain water (Nakhli et al., 2017; 
Mondal et al., 2021). In their intact natural 
environment, peat does not require zeolite application 

since they also have high WHC (Comeau et al., 2021) 
and are located in coastal or riverine back swamp areas 
that are periodically or permanently waterlogged 
(Sakabe et al., 2018). At the early stage of oil palm 
cultivation, the environmental impact associated with 
the high CO2 flux could arise at the open peat surface 
due to the deepening GWL and rising of air and soil 
temperature, especially during the dry season (Ishikura 
et al., 2018). The combination of peat and zeolite as 
the high water-retaining agents holds much water 
could mitigate these issues by stabilizing Rh 
(significantly lower at months-1 and 3; insignificant 
increment at month-2; Figure 1) and T under lower 
PWC as shown in Figure 2. With respect to T and PWC 
as affected by zeolite amendment, these findings 
corroborated with other research in mineral soil (e.g., 
Al-Busaidi et al., 2011; Baghbani-Arani et al., 2020; 
Karami et al., 2020; Baghbani-Arani et al., 2021).  

The first observed T peak in Figure 2 is possibly 
attributed to the high amount of water initially 
contained by peat. Some researchers suggested that 
water exchange inside zeolite pores could generate the 
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release of base cations into their surrounding 
environment (Mihok et al., 2020). This condition 
enhances the decomposition process of peat material 
adjacent to zeolite particles, thereby producing 
metabolic heat that appeared as a significant increase 
at months-1. Furthermore, the second T peak observed 
at the last observation seemingly occurred due to the 
water loss and continuing decomposition process 
throughout the remaining organic material. A half 
amount of water was lost during three months, 
generating a relatively ideal environment for Rh. 
Nevertheless, the highest temperature observed in this 
study was 30% lower than the maximum temperature 
reported by the zeolite experiment using different 
organic materials (i.e., Venglovsky et al., 2005; Ramos 
et al., 2018), indicating peat and zeolite combination 
successfully suppress excessive Rh in peat, especially 
while a particular amount of nutrients were added into 
a drier peat environment.  

The prominent characteristic possessed by 
zeolite in order to restrict GHG emission is high 
available pores. These properties promote high air and 
water-filled pore space, whereas the latter had 
previously discussed. The abundance of air-filled pore 
spaces combined with a particular mechanism 
provides zeolite crystal and ample storage to trap CO2 
under certain conditions (De Baerdemaeker and De 
Vos, 2013; Kumar et al., 2020). However, the CO2 
uptake capacity of zeolite is markedly reduced under 
high humidity or water content (Kolle et al., 2021), 
which significantly constrains its functionality when 
applied in a peat environment during the rainy season. 
This also partially explains the reason for higher CO2 
emissions, with the highest PWC that is observed in 
the first month of observation. Based on these facts, an 
improved zeolite performance concerning CO2 
entrapment is considered to occur under a prolonged 
dry season. 

 Based on the result of this study, long-term 
zeolite application is important in oil palm cultivated 
tropical peatland. Three months of incubation could 
significantly restrict peat Rh, shown by the flattening 
trend over the first and second months in Figure 1b. In 
the field, the zeolite amendment combined with 
appropriate management of drainage and agronomic 
practice could minimize the microbial activity in 
decomposing peat materials. Moreover, good drainage 
management results stabilized GWL, hence, 
preserving PWC at its moist condition at long period. 
Thus, matured oil palm trees, understory covers, and 
pruned fronds piles provide thick shading and 
coverage at each microsite, preventing direct 
atmospheric exposure to the peat material at the 
surface. Both practices maintain air and soil 
temperature stabilization, hence, minimizing Rh and 
CO2 flux (Jauhainen et al., 2014; Manning et al., 2019; 
Pulunggono et al., 2022a). 

By combining all evaluation metrics, this study 
found that polynomial and ML-based pedotransfer 

models were considered promising to predict CO2 flux 
emitted from tropical peat materials as affected by 
zeolite amelioration rather than using widespread 
MLR technique (e.g., Nurzakiah et al., 2021; 
Pulunggono et al., 2022a; Figures 4 and 5). These 
findings were caused by their flexibility in capturing 
non-linear relationships among Rh with its predictors, 
which in this study were markedly related to zeolite 
amendment. The CO2 flux emitted from incubated peat 
material was the result of biological processes that 
originated from microbial Rh. Some published reports 
revealed the importance of factors and variables used 
in this study in controlling microbial respiration, 
therefore suggesting their non-linear relationships with 
CO2 emissions. Previous reports indicated that zeolite 
addition could boost CO2 emission from composted 
sludge (Awasthi et al., 2016) and duck manure (Wang 
et al., 2014), contrastingly with inhibitory effects 
found in this study (Figures 1 and 6), as well as other 
composting experiment using swine (Bautista et al., 
2011), cattle mixtures (Lim et al., 2017), and chicken 
manures (Peng et al., 2019). Kučić et al. (2013) found 
that CO2 gas emitted from grape and tobacco wastes 
mixture incubated with zeolite was strongly affected 
by incubation time with non-linear decreasing trend 
over time, similarly to other reports conducted using 
various types of organic manures or sludge (e.g., Wang 
et al., 2014; Awasthi et al., 2016; Wang et al., 2020). 
Hirano et al. (2009) and Jauhainen et al. (2014) 
reported a close relationship between soil temperature 
with Rh in tropical peatland, similar to this study 
(Figure 7). However, their relation seemingly appeared 
as non-linear, concerning the lower R2 and correlation 
found by Marwanto et al. (2014) and Batubara et al. 
(2019). 

This study also provides examples and 
comparisons of pedotransfer models trained with 
different techniques. Single splitting and single 
splitting with grid search were performed on GAM and 
SVR, respectively. Meanwhile, other pedotransfer 
models (i.e., MLR, LogLM, MARS, Cubist, TR, RF, 
and GBM) were trained and tuned with repeated k-
folds cross-validation/KFCV methods using training 
data (70% of the entire data). KFCV performed in this 
study provides 50 randomized models, trained and 
tuned separately using 80% of the training data and 
internally tested using the remainder 20% data. 
Furthermore, the tuning process of some tree-based 
ensemble ML models used in this study (i.e., RF and 
GBM) was more complex. They perform a stochastic 
approach, employing a random subspace method 
which requires random resampling on the training 
data, subsequently averaging the entire constructed 
sub-trees (Ho, 1998; Breiman, 2001) or additively 
validated each sub-trees using out-of-bag data and 
gradient descent (Friedman, 2001). Both first models 
acquired the lowest RMSE and MAE (Figure 4), as 
well as the highest R2 (Figure 5), whereas common 
best-performers (e.g., RF and GBM) followed behind 
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them. More simplified and explainable models (i.e., 
MLR, LogLM, and TR) were at the least. These 
agreement metrics obtained by GAM and SVR were 
possibly biased since they only computed on a single 
instance. These results were supported by other 
polynomial-based pedotransfer models, i.e., MARS, 
which trained using KFCV method, obtaining 
agreement metrics similar to ML-based models. The 
biased model that relied on the single instance was 
vulnerable to overfitting, could not compensate for 
outliers, and may fail to generalize on real-field 
deployment. Some research also noted that KFCV 
approach was weak in mitigating overfitting, 
particularly when applied to evaluate models with 
limited samples size. Nested KFCV sufficiently 
provides the best-unbiased estimates and reliable 
model compared to all approaches used in this study, 
as well as more robust to outliers according to previous 
findings and reviews (Tabe-Bordbar et al., 2018; 
Vabalas et al., 2019; Maleki et al., 2020; An et al., 
2021). Unfortunately, nested-based techniques cannot 
be explored in this study due to the limitation of 
observation data. Based on the above explanation, this 
study considered Cubist and GBM as the most reliable 
AI-based pedotransfer model, regarding their 
predictive performance and relatively unbiased design 
for model development. 

Contrasting with this study, Nurzakiah et al. 
(2021) reported considerably higher R2 (0.91) of CO2 
flux than predicted from MLR-based pedotransfer 
model. A similar method with lower R2 (0.14-0.49) 
was also reported by Pulunggono et al. (2022a), who 
utilized different variables to predict CO2 flux. Molnar 
(2022) stated that evaluating models with training data 
is somewhat problematic since they utilized the same 
dataset that was used for training the model, which is 
considered prone to over-optimistic estimation. This is 
because the models are forced to predict from and 
compare their prediction with the data they previously 
learned, not from the new unseen data.   

Conclusion  

Utilization of tropical peatland potentially generated 
considerable Rh, thereby enhancing organic material 
degradation and boosting GHG emissions into the 
atmosphere. Through this simulation study, zeolite 
could be used as a potential amendment to restrict Rh 
from tropical peat material, as shown by decreasing 
trend of CO2 flux affected by zeolite content and 
incubation time. Both factors significantly controlled 
CO2 flux with linear and non-linear patterns, based on 
the evidence of descriptive (LME-REML and PCA) 
and predictive pedotransfer-based modelling (GAM, 
Cubist, and GBM) statistical approaches. Zeolite 
amelioration at 30 to 50% of peat field capacity and 
the entire months of observation (except for month-0) 
significantly reduced CO2 fluxes (0.021-0.012 and 
0.019-0.012 mg m-2 sec-1, respectively). Besides the 

factors, T and TPA were the soil variables that non-
linearly govern CO2 flux, whereas other variables were 
less important. This study provides the initial attempt 
to disclose the importance of pairing descriptive and 
predictive modelling analyses, particularly while 
factors and variables had complex and non-linear 
relationships.  
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