
JOURNAL OF DEGRADED AND MINING LANDS MANAGEMENT 
Volume 10, Number 1 (October 2022):3849-3859, doi:10.15243/jdmlm.2022.101.3849 
ISSN: 2339-076X (p); 2502-2458 (e), www.jdmlm.ub.ac.id 

 

Open Access                                                                                                                                                        3849 
 

 

Research Article  

Characteristics and factors affecting surface and shallow landslides in West 
Java, Indonesia 

Yulia Amirul Fata1, Hendrayanto2*, Budi Kuncahyo2, Erizal3, Suria Darma Tarigan4 

1  Forest Management Science, Graduate Study Program, IPB University, Bogor 16680, Indonesia 
2  Forest Management Department, IPB University, Bogor 16680, Indonesia 
3  Civil and Environmental Engineering Department, IPB University, Bogor 16680, Indonesia 
4  Soil and Land Resources Science Department, IPB University, Bogor 16680, Indonesia 

*corresponding author: hendrayanto@apps.ipb.ac.id 

  
Abstract  

Article history: 
Received 3 June 2022  
Accepted 28 July 2022  
Published 1 October 2022 
 

 Bogor, Cianjur, and Sukabumi areas of West Java Province, Indonesia, 
are vulnerable landslide areas. This study analyzes the landslide 
characteristic and the factors affecting landslides. The analysis was 
carried out on 148 landslides from 415 of 2018-2020 landslides, which 
were selected purposively by considering the heterogeneity of soil, 
geology, slope classes, land use type, and accessibility of landslide 
locations. Landslide characteristics and factors affecting landslides were 
analyzed using frequency analysis and binary logistic regression. The 
results showed that the most dominant characteristics of surface and 
shallow landslides were the landslides characterized by slopes >45%, 
Quaternary geological period, Andisol soil type, agriculture land use 
type, the occurrence of rain, and absence of earthquake. The dominant 
factors affecting surface and shallow landslides are human activities in 
land use, soil properties, steep-very steep slopes, Inceptisol and Entisol 
soil orders, young rocks (Quaternary geological period), rainfall events, 
and high earthquake magnitude. 
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Introduction 

Landslides in Indonesia were the third most common 
disaster after floods and tornadoes. During the last five 
years, 2015 to 2020 occurred 1.154 landslides, or 22% 
of all disaster events, have caused >40 thousand 
fatalities, >2 thousand house damages, and >60 public 
facility damages, hitting health worship and education 
facilities. 36% of landslides occurred in West Java 
during that period and spread to Bogor, Cianjur, and 
Sukabumi areas (BNPB, 2020). 

Investigation of the causes of the landslide has 
been carried out in various countries with different 
methods. Landslide investigations in the United States 
of America, Michigan, use a combination of physical, 
statistical, and hydrological models (Weidner et al., 

2019); in Iran, use landslide positioning techniques, 
sample testing, and random sampling (Pourghasemi et 
al., 2019); in Algeria, China, Turkey, and Malaysia use 
geophysical methods (Su et al., 2016; Yalcinkaya et 
al., 2016; Nordiana et al., 2017; Mezerreg et al., 2019), 
in Italy and Poland use statistical methods and spatial 
mapping (Wistuba et al., 2018; Forte et al., 2019); 
while in Indonesia use self-potential methods, 
geological, geotechnical, and social investigations 
(Dwikorita et al., 2011; Santoso et al., 2019). 

Investigations of landslide causes, using various 
methods and theories, indicated that, in general, 
landslides were caused by natural factors and human 
actions in land management. These natural factors and 
human influences were geology, geomorphology, 
geomorphometry, slope, human activities, 
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earthquakes, rainfall (Chang et al., 2017; Ojala et al., 
2017; Tanyas et al., 2018), hydrogeology, soil water 
content (Wistuba et al., 2018), vegetation (Ollauri and 
Mickovski 2017; Sidle and Ziegler, 2017), regional 
meteorology (Peruccacci et al., 2017), and previous 
avalanches (Samia et al., 2017). The factors that cause 
landslides differ in each location due to complex 
interactions among factors that affect slope stability 
(Ojala et al., 2017). Investigating landslide 
characteristics in a specific place becomes essential to 
determine the dominant factor causing landslides in 
that place. 

This study objective was to analyze the landslide 
characteristics and factors affecting landslides in 
Bogor, Sukabumi, and Cianjur areas of West Java 
Province, Indonesia. 

Materials and Methods 

Study site 

The study area covers Bogor Regency and City, 
Cianjur Regency, and Sukabumi Regency and City, 
West Java Province, Indonesia. In the study area, 
during the last three years (2018-2020), there have 
been at least 415 landslide events (Figure 1). 

Landslide location 

The landslide locations investigated were selected 
based on the landslide location characteristics, 
including rock type, soil type, slope steepness class, 

and land use type, by considering accessibility. The 
characteristics were analyzed from the distribution of 
landslide events during the 2018-2020 period on maps 
of soil type, rock type, slope class, and land use. 

Data and tools 

The data used to determine the characteristics of 
landslide locations were the 2018-2020 landslide 
locations from the BNPB Report (2020), soil types 
resulting from analysis of soil type maps at a scale of 
1:50000 (BBSDLP, 2019) using the USDA 
classification system, rock types resulting from 
geological map analysis at the scale of 1:50000, slope 
steepness class resulting from analysis of DEMNAS 
data (National Digital Elevation Model) with a spatial 
resolution of 5 x 11.25 m, land cover types resulting 
from visual interpretation of SPOT 6 and 7 imagery 
with a spatial resolution of 1.5 x 1.5 m and verified 
through field inspections, three years earthquake latest 
data from USGS (United States Geological Survey) 
and BMKG (Meteorology, Climatology, and 
Geophysics Agency of Indonesia), and daily rainfall 
data for the 2018-2020 period (BMKG, 2019). 

Landslide characteristics analysis 

The landslide characteristics analysis included the 
landslide depth, land use type, lithology period type, 
soil type, occurrence and magnitude of the earthquake, 
rainfall occurrence, and landslide slope steepness 
(Table 1). 

 

 

Figure 1. Research area. 
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Landslide depth was measured in the field and used to 
classify landslides into surface landslides and shallow 
landslides. The surface landslide was a landslide with 
a depth of <1.5 m, while the shallow landslide was a 
landslide with a depth of >1.5–10 m (Broms, 1975; 
Dou et al., 2015). Landslides with a depth of >10 m 
were classified as deep landslides. The measurement 
of landslide depth for one type of landslide is shown in 
Figure 2. Land-use types were analyzed from land use 

maps resulting from visual interpretation of SPOT 6 
and 7 imagery validated in the field based on the land 
use type around the landslide location. In contrast, rock 
types and soil types were analyzed from the Soil Type 
Map, and Geological Map based on the landslide 
location due to landslide location coordinates in the 
field using GPS. The slope was measured using a 
clinometer and in some cases, using a roll-meter to 
measure the height and length of the landslide. 

 

 
Figure 2. Measurement of landslide depth on the multiple rotational landslide type. 

 
Analysis of factors affecting landslide  

Factors affecting landslides were analyzed using two 
approaches, namely frequency analysis of landslide 
characteristics and binary-multivariate logistic 
regression. The frequency of landslide characteristics 
was analyzed based on the number of landslides with 
the six parameters' characteristics (Table 1). 
Meanwhile, binary-multivariate logistic regression is 
an analysis model to predict binary/dichotomous 
dependent variables based on a set of independent 
variables (Lee, 2004; Kalantar et al., 2017; Aditian et 
al., 2018). Binary dependent variables (Yj) used were 
surface landslides (Y=0) and shallow landslides 
(Y=1), and the independent variables (Xi) used were 
land cover, geological period, soil type, earthquake 
magnitude class, rainfall occurrence, and slope 
steepness. The types of data and the measurement 
scale of each independent variable (Xi) are presented 
in Table 1. 
 The multiple logistic regression models being 
tested are presented in equations (1) and (2) (Hosmer 
and Lemeshow, 2000). 
 

𝑌 = 𝑙𝑛
( )

( )
= 𝛽 + ∑ 𝛽 𝑥 +𝛽 𝑥                 (1) 

 

𝑃 = =
∑

∑

                                 (2) 

 
Y is the dependent variable, where Y=0 (surface 
landslide) and Y =1 (shallow landslide). P is the 
probability of shallow landslides, while 1-P is the 
probability of surface landslides. The notation β0 is a 
constant, and βjl is the coefficient of the categorical 
independent variable “j”, class “l”, and xjl is the 
categorical independent variable “j”, class “l”, j = 1, 2, 
…, 5, where 1: land cover, 2: geological period, 3: soil 
type, 4: earthquake magnitude, 5: rainfall. l1: (1) 
Forest, (2) Agriculture, (3) Settlement, (4) Road, l2: (1) 
Quaternary, (2) Neogene and Paleogene, l3: (1) 
Inceptisol, (2) Alfisol, (3 ) Andisol, (4) Ultisol, (5) 
Entisol, l4: (1) Earthquake absence, (2) Medium 
magnitude, (3) High magnitude, and l5: (1) Rainfall 
absence, (2) Rainfall presence. βi is the coefficient of 
the numerical independent variable “I”. The notation χi 

is the numerical independent variable “i”, i = 6, 6: the 
slope steepness, while e is a constant of 2.718.  

Multiple logistic regression modelling uses three 
approaches, namely modelling using all independent 
variables (enter), backward elimination (Wald) 
(backward stepwise selection), and forward selection 
(Wald) (stepwise selection). 
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Table 1. Type, measurement scale, and description of independent variables. 

Data Type Independent 
Variables 

Description Code/Value Measurement 
Scale 

Categorical 

x1 Land Cover 

x1.1 = Forest 

Dummy variable 
x1.2 = Agriculture 
x1.3 = Settlement*) 
x1.4 = Road 

x2 
Geological 

Period 
x2.1  Quaternary 

Dummy variable 
x2.2 = Neogene and Paleogene*) 

x3 Soil Type 

x3.1 = Inceptisols*) 

Dummy variable 
x3.2 = Alfisols 
x3.3 = Andisols 
x3.4 = Ultisols 
x3.5 = Entisols 

x4 
Earthquake 
Magnitude 

x4.1 = Earthquake Absence*) 
Dummy variable x4.2 = Medium Magnitude 

x4.3 = High Magnitude 

x5 Rainfall 
x5.1 = Rainfall Absence*) 

Dummy variable 
x5.2 = Rainfall Presence 

Numerical x6 Slope -   Ratio 

Note: *) = Reference variable. 
 
The entry approach is modelling by entering all 
independent variables in one step. The backward 
elimination (Wald) (backward stepwise selection) 
approach is a model formulation that starts with a 
model that contains all independent variables (Full 
Model), and then proceeds to eliminate the 
independent variables in stages based on the statistical 
probability value of the Wald test. Elimination of 
independent variables is continued until the remaining 
independent variables in the model are independent 
variables that significantly affect the dependent 
variable (Sig <0.05). Meanwhile, in the forward 
selection (Wald) (stepwise selection) approach, the 
modelling begins with a model that does not contain 
the independent variables (Null Model), and then adds 
the independent variables to the model gradually based 
on the most significant independent variables. If the 
independent variables have no significant effect, the 
independent variables are excluded from the model 
based on the Wald statistical probability. The addition 
of independent variables continues until all 
independent variables are included in the model until a 
suitable model is obtained with independent variables 
that significantly affect the dependent variable (Sig 
<0.05). 

The modelling process using backward 
elimination and forward selection approach also 
selected independent variables using the confounding 
test. The confounding test is a test to determine 
changes in the odds ratio value by excluding 
independent variables that have a low significance 
value (Sig >0.05) to determine which independent 
variables need to be removed from the model (change 
in odds ratio value <10%) or independent variables are 
confounding (change in odds ratio value >10%). Wald 
test is a test to determine the level of significance of an 

independent variable on the dependent variable. The 
level of significance is shown based on the p-value 
(Sig). If the value of Sig <0.05, it is stated that the 
independent variable has a significant effect. In 
addition, the value of Exp (β) from the Wald test is the 
value of the odds ratio, namely the effect of the 
independent variable relative to the dependent variable 
for shallow landslides (Y=1). The confidence interval 
(CI) for Exp (β) is 95%. The positive value of CI 95% 
means the increase of the independent variable can 
enhance the probability of the dependent variable and 
vice versa. The lower and upper boundaries are the 
prediction value range for the CI 95% (Hosmer and 
Lemeshow, 2000). The goodness of fit test of the 
model was tested using omnibus, Hosmer and 
Lemeshow (2000), overall percentage, coefficient of 
determination (-2 Log Likelihood, Cox and S, nell R 
square, and Negelkerke R Square), and Wald's test. 
The selection of the best model was based on Hosmer 
and Lemeshow (2000) using the results of the 
goodness of fittest. The best model in logistic 
regression is the model with the most significant log-
likelihood value or the results of the goodness of 
fittest. The best model selection considering the 
goodness of fit test results and simplicity and 
practicality in use is also based on professional 
judgment. 

Results and Discussion  

Landslide characteristics 

The number of selected landslides from 415 landslides 
for the 2018-2020 period was 148 landslides. The 
characteristics of 148 landslides are presented in 
Figure 3, which shows six landslide characteristics that 
occur in more than two landslide events. 
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Figure 3. Characteristics of shallow-surface landslides ≥two events. 

Notes:   
A : Land Use/Cover; (A1) Disturbed Forest; (A2) Agriculture; (A3) Settlement; (A4) Road 
B : Geological Period; (B1) Quaternary and (B2) Neogene and Paleogene 
C : Soil Type; (C1) Inceptisols; (C2) Alfisols, (C3) Andisols, (C4) Ultisols, (C5) Entisols 
D : Earthquake; (D1) Absent; (D2) Moderate magnitude; (D3) High magnitude 
E : Rainfall; (E1) Absent; (E2) Present 
F : Slope steepness class; (F1) <8%; (F2) 8–15%; (F3) 15–25%; (F4) 25–40%; (F5) >40% 

 
 
The distribution of 6 parameters individually in 148 
landslides, both surface and shallow landslides, is 
presented in Figure 4. Illustrations of shallow-surface 
landslides are presented in Figure 5. Based on the data 
in Figure 3, most (70%) of the landslides were surface 
landslides, and the others (30%) were shallow 
landslides, and landslides occurred in 43 combinations 
of six landslide characteristic parameters. However, 
most (19 out of 148 landslides) occurred in locations 
with slope characteristics >40% (F5), agricultural land 
use (A2), Quaternary geological period (B1), Andisols 
soil type (C3), absence earthquake (D1), and when rain 
occurred (E2). Of 19 landslides, 13 were surface 
landslides, and 6 were shallow landslides. 
 Figures 3 and 4 show that landslides, both surface 
and shallow landslides, all occurred on land use that 
was affected by human activities in various forms, 
namely disturbed forest (A1), agriculture (A2) and 
settlement (A3) land, and road construction (A4), as 
well as where rain occurred (E2), and mainly occurs 
on land with a slope >45% (F5), Quaternary geological 
period (B1), and Inceptisols soil type (C1). Landslides 
also occurred with no earthquake (D1) and an 
earthquake with a high magnitude (D3).  Landslides in 
Bogor, Cianjur, and Sukabumi generally (50%) occur 
when a high magnitude earthquake occurs, but many 
(46%) occur when there is no earthquake (Figure 4). 
However, when viewed from the interaction of 

parameters of landslide characteristics, landslides 
mainly occur when there is no earthquake (Figure 3). 
Statistically, high magnitude earthquakes significantly 
affect shallow landslides, and the effect is 3.3 times 
greater than earthquake absence. A high magnitude 
earthquake is very logical to have a significant effect 
on both shallow and surface landslides. According to 
Ojala et al. (2017), the greater the magnitude of the 
earthquake, the greater the opportunity to reduce the 
shear strength of the soil so that it triggers deeper 
landslides (shallow landslides). The surface recovery 
of post-seismic landslides probably affecter the active 
landslides trend and debris flow (Chen et al., 2021). 
Earthquake vibrations affect slope stability. However, 
that does not mean that without an earthquake, there 
will be no landslides because landslides can occur due 
to the character of the land that is vulnerable to 
landslides and can be triggered by other factors, 
namely rainfall and human activities that reduce slope 
stability. Rain is the main trigger factor for landslides 
in the study area. 95% of the occurrences of shallow-
surface landslides in the field occur with rainfall 
presence. The dominant types of slope movements are 
surface and shallow landslides that mostly endanger 
settlements, roads, structures, and cutting slopes 
(Figure 4 and Figure 5). Moreover, the land use system 
will be triggered by the precipitation and changes in 
groundwater levels (Arbanas et al., 2016).  
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Figure 4. Distribution of 6 parameters (A–F) individually in 148 landslides. 

 

  
(a) Surface landslide (b) Shallow landslide 

Figure 5. Surface landslide (a) and shallow landslide (b) in the study area. 
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Shallow landslides are due to human activities that 
increase soil moisture near the surface, such as 
construction, poor and insufficient sewage systems, 
and the obstruction of springs, which together result in 
a decrease in shear strength of slope materials at 
shallow depths (Tebbens, 2019). Surface landslides 
dominate the groundwater basin, while shallow 
landslides dominate the non-groundwater basin (Fata 
et al., 2022). 

Dominant factors causing shallow-surface landslide 

The results of binary-multivariate logistic regression 
analysis using data from field investigations of 148 
landslides resulted in a model of the relationship 
between shallow-surface landslides (Y0,1) with the 

factors affecting landslides as presented in equations 
(3)-(4), (3)-(5), and (3)-(6). Equation (3)-(4) is the 
model generated from the analysis using the enter 
approach (Model-1), and Equation (3)-(5) is the model 
resulting from the analysis using the backward 
elimination (Wald) approach (Model -2), while 
equation (3)-(6) is the model of the analysis using the 
forward selection (Wald) approach (Model-3).The 
constants and coefficients of the independent variables 
in equations (4), (5), and (6), and the results of the test 
of the effect of the independent variables on the 
dependent variable, namely Wald, Sig, and Exp (β) for 
each model are presented in Tables 3, 4, and 5. 

 

𝑃 =  (3) 

Y=𝛽 + 𝛽 . 𝑥 . + 𝛽 . 𝑥 . + 𝛽 . 𝑥 . + 𝛽 . 𝑥 . + 𝛽 . 𝑥 . + 𝛽 . 𝑥 . + 𝛽 . 𝑥 .  

662.52.53.43.42.42.45.35.3 xxxxx    (4) 

 
Y= 𝛽 + 𝛽 . 𝑥 . + 𝛽 . 𝑥 . + 𝛽 . 𝑥 . + 𝛽 𝑥  (5) 
 
Y=𝛽 + 𝛽 . 𝑥 . + 𝛽 . 𝑥 . + 𝛽 . 𝑥 . + 𝛽 𝑥  (6) 

 
Results of recapitulation of the goodness of fit test 
using the model accuracy test, model suitability test 
(Hosmer and Lemeshow), simultaneous test (Omnibus 
test), and coefficient of determination test (R2 and log-
likelihood) are presented in (Table 5). 

The number of selected landslides from 415 
landslides for the 2018-2020 period was 148 

landslides. The characteristics of 148 landslides are 
presented in Figure 3, which shows six landslide 
characteristics that occur in more than two landslide 
events. The distribution of 6 parameters individually in 
148 landslides, both surface and shallow landslides, is 
presented in Figure 4. Illustrations of shallow-surface 
landslides are presented in Figure 5. 

 

Table 2. Regression coefficient value, odd ratio, Wald value, and p-value (α) (Sig) of the entry approach. 

Independent Variables Symbol β S.E Wald df Sig Exp(β) 95% CI for 
        Lower Upper 
Forest x1.1 1.299 0.877 2.195 1 0.138 3.665 0.657 20.432 
Agriculture x1.2 0.244 0.515 0.224 1 0.636 1.276 0.465 3.505 
Settlement*) x1.3         
Road x1.4 -0.195 0.854 0.052 1 0.819 0.823 0.154 4.390 
Quaternary x2.1 1.232 0.544 5.132 1 0.023 3.429 1.181 9.956 
Neogene and Paleogene*) x2.2         
Inceptisol*) x3.1         
Alfisols x3.2 0.199 0.998 0.040 1 0.842 1.220 0.173 8.629 
Andisols x3.3 -0.299 0.564 0.282 1 0.595 0.741 0.246 2.237 
Ultisols x3.4 0.242 1.345 0.032 1 0.857 1.274 0.091 17.790 
Entisols x3.5 -1.530 0.615 6.196 1 0.013 0.216 0.065 0.722 
Earthquake Absence*) x4.1         
Medium Earthquake 
Magnitude 

x4.2 -0.606 0.952 0.406 1 0.524 0.546 0.084 3.522 

High Earthquake Magnitude x4.3 0.916 0.479 3.659 1 0.056 2.500 0.978 6.391 
Rainfall Absence*) x5.1         
Rainfall Presence x5.2 0.959 0.929 1.065 1 0.302 2.609 0.422 16.119 
Slope x6 -0.057 0.015 15.276 1 0.000 0.944 0.917 0.972 
Constant  3.717 2.693 1.905 1 0.168 41.126   

Note: *) = Reference variable. 
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Table 3. Regression coefficient value, odd ratio, Wald value, and p-value (α) (Sig) of backward elimination (Wald) 
(backward stepwise selection) approach. 

Independent Variables Symbol β S.E Wald df Sig Exp(β) 95% CI for 
        Lower Upper 
Quaternary x2.1 0.938 0.440 4.554 1 0.033 2.555 1.080 6.049 
Entisol x3.5 -1.211 0.542 4.992 1 0.025 0.298 0.103 0.862 
High Earthquake Magnitude x4.3 1.205 0.437 7.621 1 0.006 3.338 1.418 7.853 
Slope x6 -0.055 0.014 16.190 1 0.000 0.946 0.921 0.972 
Constant  2.818 0.997 7.911 1 0.005 16.751   

 

 
Table 4. Regression coefficient value, odd ratio, Wald value, and p-value (α) (Sig) of forward selection (Wald) 

(stepwise selection) approach.  

Independent Variables Symbol β S.E Wald df Sig Exp(β) 95% CI for 
        Lower Upper 
Quaternary x2.1 0.938 0.440 4.554 1 0.033 2.555 1.080 6.049 
Entisol x3.5 -1.211 0.542 4.992 1 0.025 0.298 0.103 0.862 
High Earthquake Magnitude x4.3 1.205 0.437 7.621 1 0.006 3.338 1.418 7.853 
Slope x6 -0.055 0.014 16.190 1 0.000 0.946 0.921 0.972 
Constant  2.818 0.997 7.911 1 0.005 16.751   

 

Table 5. The results of the model accuracy-test value, model suitability test, simultaneous test, and coefficient of 
determination test.  

Description Approach Explanation 
 Enter Backward 

elimination and 
Forward selection 

(Wald) 

 

Model accuracy test 77% 77.7% The model uses an enter, backward 
elimination, and forward selection 
approach and accurately predicts 77% of 
shallow-surface landslides. 

Goodness of fit (Hosmer 
and Lemeshow) 

0.135 > 0.05 0.097 > 0.05 Enter, backward elimination and forward 
selection models are acceptable. 

Simultaneous Test 
(Omnibus test) 

0 < 0.05 0 < 0.05 The addition of independent variables can 
significantly affect the model (model fit). 

R-square (Nagelkerke) 0.322 0.283 Based on the coefficient of determination 
(R-square) test, the ability of the 
independent variable to explain the 
dependent variable (shallow landslide) is 
<35% or the level of suitability between 
the independent variable and the 
dependent variable is low. 

R-square (Cox and Snell) 0.227 0.199 

-2 log likelihood 142.106 < 177.39 147.214 < 177.39 The model of the relationship between the 
independent variables in explaining the 
dependent variable (shallow landslides) is 
suitable (fit) with the data being used. 

 

Based on the model accuracy, the Goodness of Fit 
(Hosmer and Lemeshow) and Omnibus test results 
(Table 5), it is indicated that the three models 
(equations 3-4, 3-5, and 3-6) are suitable models to be 
used to explain the relationship between independent 
and dependent variables. However, from the 
relationship between independent and dependent 
variables based on parameters that explain the strength 

of the relationship between independent and dependent 
variables (R2-Nagelkerke, R2-Cox and Snell, and -2 
log-likelihood) (Table 5), it is indicated that the 
relationship between the independent and weak 
dependent variable, is low. 

The best models based on the log-likelihood 
value are the Backward elimination and Forward 
selection-Wald models. However, in terms of the 
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coefficient of determination (R2), Model-1, as the 
result of the entering approach, shows a higher R2 
value than that of the elimination-selection approach 
(Models 2 and 3). In this case, Hosmer and Lemeshow 
(2000) do not recommend using the R2 value in 
choosing the best logistic regression model because R2 
is affected by the number of independent variables 
used. Model-2 and Model-3 both have the same 
simplicity as the model. However, the forward 
selection approach (Model-3) is better than the 
backward elimination approach (Hosmer and 
Lemeshow, 2000). Hence, the model resulting from 
the forward selection approach (Model-3, Table 4) is 
chosen to explain the factors that affect the surface-
shallow landslide. 

Based on Model-3 (equations 3 and 6, Table 4), 
the factors that significantly affected shallow 
landslides are Quaternary geological period, Entisol 
soil type, high earthquake magnitude, and slope with 
Sig <0.05. The effect of the Quaternary geological 
period was 2.6 times greater than those of the Neogene 
and Paleogene geological periods (reference 
variables). The effect of Entisol soil type on shallow 
landslides was very small (Exp (β)Entisol <1) relative to 
Inceptisol soil type. The high earthquake magnitude is 
more influential than earthquake absence; the effect on 
shallow landslides was three times greater than 
earthquake absence. The slope steepness in Model-3 is 
a numerical independent variable (not categorical). 
The value of the slope steepness shows that with each 
increase in the slope steepness, the probability of 
affecting shallow landslides increases by 109%. 

The results of the logistic regression analysis 
showed that the land use factors categorized into the 
disturbed forest (A1), agriculture (A2), settlement 
(A3), and road (A4) did not significantly affect 
shallow landslides. The result is possible because the 
number of landslide samples observed was not 
balanced between the number of surfaces and shallow 
landslides. Statistically, it had no significant effect. 
However, based on landslide characteristics and the 
frequency analysis in the 148 landslides analyzed 
(Figures 3 and 4), it can be shown that the agricultural 
land use category (A2), both together with other 
parameters (Figure 3), or individually (Figure 4), is a 
dominant factor in every landslide event, both surface 
and shallow landslides, namely 52% vs 52% 
(percentage relative to the number of each type of 
landslide). 

The land-use categories at the landslide location 
are entirely in the category of human activities induced 
lands, namely land that has changed due to human 
activities. The agriculture category includes land use 
in rice fields, dryland farms, mixed plantations, 
plantations, and bush, which have changed due to 
slope cutting, making trails, drainage channels, and 
terraces for agricultural and plantation activities. In 
addition to changing the initial slope steepness, these 
activities also change the soil characteristic, 

decreasing slope stability. The category of the 
disturbed forest is natural and plantation forest that is 
used as an ecotourism location where there are 
footpaths and the main access road at the top of the 
slope that changes the initial form of the slopes and soil 
properties, especially in the crest of the access road 
location, as well as on the new toe of the slope 
resulting from the path construction, as well as 
drainage from the access road which is concentrated at 
specific points. 

The Quaternary geological period was found in 
103 landslides (70%), 77 landslides were surface, and 
26 shallow landslides (Figure 4). Statistically, the 
logistic regression analysis results showed that 
Quaternary rocks had a significant effect on shallow 
landslides. The effect is 2.6 times greater than that of 
Neogen-Paleogene rocks. The Quaternary geological 
period is the youngest geological period composed of 
gravel, clay, sand, sandy loam, and alluvial materials 
(Göktürkler et al., 2008). Young geological rocks are 
still unstable because hard rocks have not yet formed, 
so the potential for landslides is highest. However, the 
old geological period can also have potential shallow 
landslides due to weathering, cracks, or rock fractures 
(Hardiyatmo, 2012). 

Inceptisols soil type was found in 70 landslides 
(49%), 55 of which were surface landslides. 
Inceptisols were much more common than Andisols 
(38 landslides) and Entisols (27 landslides). However, 
statistically, Entisol soil type significantly affected 
shallow landslides, while Andisol soil type had no 
significant effect. It is probably due to the larger 
proportion of Entisol soil types in shallow landslides 
than that of Andisol soil types (Figure 4C). The value 
of Exp (β)Entisols <1 indicates that Entisol soil type's 
effect on shallow landslides is smaller than that of 
Inceptisols soil type. Inceptisols and Entisols are soils 
with lithic contact at 40–50 cm depth from the soil 
surface and are quickly saturated by water. Inceptisols 
are saturated with water at a depth of 100 cm for most 
of the year, while Entisols are highly water-saturated 
at more than 25 cm from the soil surface for more than 
21 hours per day (BBSDLP, 2016). Saturated soils 
experience increased pore water pressure faster than 
unsaturated soils (Bordoni et al., 2016). 

Meanwhile, Andisols soil types are mineral soils 
with organic matter content exceeding the organic 
carbon limit (BBSDLP 2016). Andisol soil has a loose 
surface layer with a thickness of ±1 m, is porous, has a 
low density, and has an aggregation structure that is 
relatively weak (Arabia et al., 2015). The stability of 
the Andisols soil aggregates is good, and the 
permeability is high, so this soil is relatively resistant 
to erosion by water, except for the types of Andisols 
that experience intensive hydration and intensive 
drying. Even though the Andisol soil type has 
relatively better properties against landslides as 
compared to the Entisol soil type, if it interacts with 
other parameters that are vulnerable to landslides 
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(steep-very steep slopes, human activities that reduce 
land stability, high-intensity rainfall), it was potential 
to exhibit landslides as shown by the data in Figure 3. 
The slope steepness significantly affects the 
probability of shallow landslides (Table 4). Based on 
the value of Exp(β), the higher the slope, the higher the 
probability of shallow landslides, 0.946. The 
frequency analysis results showed that all shallow 
landslides occurred at slopes >45% (Figures 3 and 4). 
The slope of the surface landslide was steeper because 
artificial slopes dominated it. The slope level affects 
the type and size of the landslide (Reichenbach et al., 
2018). 

Based on the characteristics of 148 landslides in 
the Bogor, Sukabumi, and Cianjur areas, as well as the 
results of logistic regression analysis, it can be 
demonstrated that landslide occurrence, both surface 
and shallow landslides, are the result of complex 
parameter interactions, both between physical land 
parameters (slope steepness, geological period type, 
soil type) and triggering parameters (land use, rainfall, 
earthquake), making it difficult to determine the 
dominant factors. 

However, based on the parameter characteristic, 
logistic regression analysis, and the landslide 
frequency, the parameters that have a relatively 
dominant role in landslide occurrence especially 
shallow landslides, are the land physical 
characteristics that are vulnerable to landslides, 
namely steep-very steep slopes, young geological 
rocks (Quaternary), Entisols and Inceptisols soil type, 
and the triggering parameters such as high magnitude 
earthquake, rainfall, and human activities in land use. 

Conclusion  

The characteristics of landslides in the Bogor, 
Sukabumi, and Cianjur areas vary. There are at least 
43 landslide characteristics. The most dominant 
character of landslides (surface and shallow 
landslides) is characterized by slopes >45%, 
Quaternary geological period, Andisol soil type, land 
use in the form of agriculture, the occurrence of rain, 
and absence of triggering an earthquake. Although 
there is no earthquake in an area, landslides occur 
when the physical properties of the land are vulnerable 
to landslides (slopes are steep-very steep, and the rock 
is young). Some factors that act as a trigger are rainfall 
occurrence and human activities that change the slope 
steepness and soil properties that reduce the stability 
of the land. 
 The dominant factors influencing surface and 
shallow landslides are human activities in land use that 
change the initial shape of the slope steepness, soil 
properties, steep-very steep slopes, Inceptisol and 
Entisol soil types, and young rocks (Quaternary 
geological period), rainfall events, and high 
earthquake magnitude. 
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